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In order to express equation (4) in terms of rectangular

coordinates we replace tan by -^ and obtain
dx

s =
w dx

(5)

But ds 2 = dx 2+ dy 2
, therefore eliminating da; 'between this

equation and equation (5) and separating the variables

and then integrating

, sds
dy = —=^=>

Vs 2+ a 2

y = Vs 2+ a 2+ c,

(6)

where a = — and c is the constant of integration.

Let the o>axis be so chosen that when s= 0, y = a, then

c= 0. Therefore

y = Vs 2 -\-a
2
, or s= ^y 2 — a'' (7)

Differentiating equation (7), squaring and replacing ds 2 by

(dx 2 + dy 2
) we have

,

dx 2 +dy 2 = ^\.
y

2 — a2

Solving for dx,

dx= —
v^/ 2 — a 2

ady

dy

v-i V?-
ady

iVa 2 — y
2

(8)

where i = V — 1. Integrating equation (8) we get

— = cos 1 - +c .

a a
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But y — a, when x= 0, therefore d = 0. Thus we get

%x
y = a cos—> (9)

= a cosh -,
a

(10)

= l(ehe^\ (11)

rp 1 wx wx\

(12)

which are different forms of the equation of a catenary.

Discussion.—Expanding equation (12) by Maclaurin's

Theoremf we obtain

In the neighborhood of the lowest point of the cable the

value of x is small, therefore in (13) we can neglect all the

terms which contain powers of x higher than the second.

Thus the equation

V=a+fa (14)

represents, approximately, the curve in the neighborhood

of the lowest point. It will be observed that (14) is the

equation of a parabola. This result would be expected

since the curve is practically straight in the neighborhood

of O and consequently the horizontal distribution of mass

is very nearly constant, which is the important feature of

the Suspension Bridge problem.

The nature of those parts of the curve which are removed

from the lowest point may be studied by supposing x to be
X

large. Then since e a becomes negligible equation (11) re-

duces to

V=\e% (15 )

* See Appendix A. f See Appendix.
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The curve, Fig. 43, denned

by equation (15) is called an

exponential curve. It has an

interesting property, namely,

its ordinate is doubled every

time a constant value P is

added to its abscissa. This

constant is called the half-value

period of the curve. The value

of P may be determined in

the following manner. By the

definition of P and from equa-

tion (15) we have

2 y = -e

Dividing (16) by (15) we get

X+P
(16)

2 = e
a

,

or P = a log e 2.

Length of Cable.—In order to find the length in terms

of the span eliminate y between equations (7) and (11).

This gives
~f * _*\

e
a -e a (17)

*+
2.3 a 2

+ 2.3.4 5 a'
+ (18)

where the right member of equation (18) is obtained by

expanding the right-hand member of equation (17) by

Maclaurin's Theorem.

If D and L denote the span and the length of the cable,

respectively, we have s = ^L when x=\D. Therefore sub-

stituting these values of s and x in (18) and replacing a by

its value we obtain

^ 2
(*
D+ f8 f> + ---> (19)
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When the cable is stretched tight T is large compared with

w. Therefore the higher terms of the series may be ne-

glected and equation (1) be put in the following approxi-

mate form.

4+ilH- (20)

l_ w^_

24 TV

1 w 2

Hence the increase in length due to sagging is — —
2
D 3

,

approximately.

PROBLEMS.

1. A perfectly flexible cord hangs over two smooth pegs, with its ends

hanging freely, while its central part hangs in a catenary. If the two

pegs are on the same level and at a distance D apart, show that the total

length of the string must not be less than De, in order that equilibrium

shall be possible, where e is the natural logarithmic base.

, 2. In the preceding problem show that the ends of the cord will be

on the x-axis.

3. Supposing that a telegraph wire cannot sustain more than the

weight of one mile of its own length, find the least and the greatest sag

allowable in a line where there are 20 poles to the mile.

4. Find the actual length of the wire per mile of the line in the pre-

ceding problem.

5. The width of a river is measured by stretching a tape over it.

The middle point of the tape touches the surface of the water while the

ends are at a height H from the surface. If the tape reads S, show that

/S 2 — H 2

the width of the river is approximately i/

6. Show that the cost of wire and posts of a telegraph line is mini-

mum if the cost of the posts is twice that of the additional length of wire

required by sagging. The posts are supposed to be evenly spaced and
large in number.

7. A uniform cable which weighs 100 tons is suspended between two
points, 500 feet apart, in the same horizontal line. The lowest point of

the cable is 40 feet below the points of support. Find the smallest and
the greatest values of the tensile force.

8. In the preceding problem find the length of the cable.

65. Friction Belts.— The flexible cord AB, Fig. 44, is in

equilibrium under the action of three forces, namely, T



68 ANALYTICAL MECHANICS

and T, which are applied at the ends of the cord, and the

reaction of the rough surface of C, with which it is in con-

tact. It is desired to find the relation between T and T
when the cord is just on the point of motion towards T .

Fig. 44.

Consider the equilibrium of an element of that part of the

cord which is in contact with the surface. The element

is acted upon by the following three forces:

The tensile force in the cord to the right of the element.

The tensile force in the cord to the left of the element.

The reaction of the surface.

Let the tensile force to the left of the element be denoted

by T, then the tensile force to the right may be denoted by

T+ dT. On the other hand if R denotes the reaction of

the surface per unit length of the cord, the reaction on the

element is R ds, where ds is the length of the element. We
will, as usual, replace R by its frictional component F and

its normal component N.
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Taking the axes along the tangent and the normal through

the middle point of the element and applying the conditions

of equilibrium we obtain

2X = (T + dT) cos— - T cos ^ - F ( - ds) = 0,

2Y = N ds - T sin^ - (T + dT) sin ~ = 0,

rfft

or dT cos- +Fds = 0,

Nds-2Tsm—-dTsm- = 0,
2 2

where dd is the angle between the two tensile forces which

act at the ends of the element. The negative sign in F (—ds)

indicates the fact that F and ds are measured in opposite di-

rections. But since the cord is supposed to be perfectly

flexible the tensile forces are tangent to the surface of con-

tact. Therefore is the angle between the tangents, and

consequently the angle between the normals, at the ends of

the element. As an angle becomes indefinitely small its

cosine approaches unity and its sine approaches the angle

itself,* therefore we can make the substitutions

de , , . de de
cos— = 1 and sin— = —

2 2 2

in the last two equations, and obtain

dT+Fds=0, (1)

and Nds-Td6 + idTdd=0. (2)

Neglecting the differential of the second order in equation

(2) and then eliminating ds between equations (1) and (2)

we get

Y =
"N de= ~ M ^' (3)

where m is the coefficient of friction. Integrating the last

* See Appendix A.
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equation and passing from the logarithmic to the exponen-

tial form, we have
T = ce~»\

where c is the constant of integration. If d is measured from

the normal to the surface at the point where the right-hand

side of the cord leaves contact we obtain the initial condition,

T = To when 0=0, which determines c. Applying this con-

dition to the last equation we have

T = T e-»e
. (4)

Discussion. — Equation (4) gives the relation between the values of

the tensile force at any two points of the cord. It must be observed that

is measured in the same direction as F; in other words, opposite the

direction towards which the cord is urged to move. Therefore T or T
has the larger value according to whether is positive or negative. As

a concrete example suppose a weight W to be suspended from the right-

hand end of the cord and to be held in equilibrium by a force F applied at

the left-hand end. If F is just large enough to prevent W from falling

then the cord will be on the point of moving to the right, therefore is

measured in the counter-clockwise T
direction and is positive. In this

case

F = We' 116
.

In case F is just large enough to start

W to move up, then is measured in

the clockwise direction and is nega-

tive. Therefore ^

F = We>*.

The value of T drops very rapidly

with the increase of 0. This fact

is made clear by drawing the graph

of equation (4), Fig. 45. The graph

may be constructed easily by making use of the half-value period of the

curve. If P denotes the period, then, by definition, the ordinate is reduced

to one-half its value every time P is added to 0.* We have therefore
,

±T=T e-»
(e+P)

.

* The difference between this definition of P and the one given in the pre-

ceding section is accounted for by the difference in the signs of the exponents

in equation (4) and in equation (14) of the preceding section.
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(5)

Dividing equation (4) by the last equation we get

or P=iloge 2

= ^.

Thus if 6 = nP, then by equations (4) and (5)

T=|- (6)

Therefore taking 0.53 for hemp rope on oak and 6 = 2 w, we obtain

n = 4.76 and 2n = 27.3. Hence in this case T is 27.3 times as great

as T.

APPLICATION TO BELTS.

The tensile force on one side of a belt which transmits

power is greater than that on the other side. The relation

between the tensile forces on the two sides of the belt is

given by equation (4) . Thus if Tx denotes the tensile force

on the driving side and T2 that on the slack side, then

T2 = T&- 1* or 7\ = T2&*. (40

The difference between T\ and T2 is the effective force which

drives the pulley. Denoting the effective force by F, we
have

F = Tx - T2

= Tl (l- e~^) (7)

= !T2 (e^-l). )

We have neglected the cross-section of the cord in the

solution of the foregoing problem. Therefore the results

which we have obtained are applicable to actual problems

only when the cross-section of the cord is negligible com-

pared with that of the solid with which it is in contact.

PROBLEMS.

1. A weight of 5 tons is to be raised from the hold of a ship by means

of a rope which takes 3| turns around the drum of a steam windlass. If

(jl = 0.25 what force must a man exert at the other end of the rope?
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2. By pulling with a force of 200 pounds a man just keeps from surg-

ing a rope, which takes 2.5 turns around a post. Find the tensile force

at the other end of the rope, /x = 0.2.

3. A weight W is suspended by a rope which makes li turns around

a clamped pulley and goes to the hand of a workman. If /x = 0.2, find

the force the man has to apply in order (a) to support the weight, (b) to

raise it.

4. Two men, who can pull 250 pounds each, can support a weight by

means of a rope which takes 2 turns around a post. On the other hand,

one of the men can support it alone if the rope makes 2.5 turns. Find

the weight.

5. In order to prevent surging a sailor has to exert a force of 150

pounds at the end of a hawser, which is used to keep the stern of a boat

at rest while the bow is being turned by the engines. Find the pull

exerted by the boat upon the hawser under the following conditions

:

[Hint.— Make use of equations (5) and (6).]

(a) =
|

5 M = 0.2.

(b) = |, M = 0.5.

(c) = |, M = 0.5.

(d) d = 7T, m = 0.4.

(e) d =
^f,

M = 0.3.

(f) = ^, M = 0.2.

6. A belt has to transmit an effective force of 500 pounds. Find the

tensile force on both sides of the belt, under the following conditions

:

(a) = 135°, m = 0.5. (e) = 165°, ix = 0.2.

(b) 6 = 135°, /* = 0.4. (f) 6 = 180°, n = 0.3.

(c) = 150°, n = 0.3. (g) d = 180°, m = 0.5.

(d) = 165°, ju = 0.5. (h) = 195°
7

/* = 0.4.

7. In the preceding problem find the width of the belt, supposing

the permissible safe tensile force to be 50 pounds per inch of its width.

(g) B = 2ir, IX = 0.1.

(h) e =
^f,

ix = 0.4.

(i) e = 5

f, ix = 0.5.

(i) e = 3w, ix = 0.3.

(k) =^ ix = 0.4.

(i) e = 7

-f,
ix = 0.5.
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