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Preface

This book grew out of an introduction to portfolio choice problems presented in
Chapados (2010). This problem has a long history: Markowitz's 1952 treatment of
the subject now known as “Modern Portfolio Theory” is close to reaching the vener-
able age of sixty. In the intervening years, notions such as mean-variance ef ciency
have had enormous impact in the theory and practice of nance, not only on the
“mundane” task of asset allocation but as models of the general trade-off between
risk and return in nancial markets, as well as portfolio performance measurement
and attribution.

For newcomers to the eld, it has been increasingly dif cult to obtain a broad
yet concise coverage of the subject. On the one hand, the practitioner-oriented liter-
ature focuses, by and large, on single-period models and the technimested do
X the de ciencies in Markowitz's simple quadratic programming formulation. On
the other hand, more academic treatments address the elegant generalization to the
multiperiod case, but have been far less accessible. Moreover, the substantial body
of research outside the eld of nancial economics has largely been scattered, with
no work attempting to bring a uni ed treatment to the topic.

This book aims to Il this gap by offering a broad coverage of portfolio choice,
containing both application-oriented and academic results, along with abundant
pointers to the literature for further study. It tries to cut through many strands of
the subject, presenting not only the classical results from nancial economics but
also approaches originating from information theory, machine learning and opera-
tions research.

As such, it should prove useful to students entering the eld as well as practition-
ers looking for a broad coverage of the topic.

1 Which some would respecfully dub “hacks”.
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Chapter 1
Introduction

If economists could manage to get themselves thought
of as humble, competent people, on a level with den-
tists, that would be splendid.

— John Maynard Keynes

PORTFOLIO CHOICEIs a central problem of economic agents. In plain words, it
asks how one should “best” spread one's wealth across a number of different
assets to maximize return and control risk. Of course, each asset is unique and offers
its own outcome perspectives. These can be roughly summarized by an “expected
return” and a “risk” aspect: the rst one quanti es what would be the likely price
appreciation of the asset or income arising from it over a given time period; the
second measures how uncertain these payoffs to the investor can be.

It has long been understood that there is a fundamental trade-off between these
two aspects, yielding a continuum of opportunities: at one end of the spectrum,
short-term government bonds provide very small returns with absolute ceftainty.
At the other end, small-cap growth stocks, for instance, may promise staggering
returns—but only if the company succeeds, for otherwise the investor may as well
completely lose all her money.

Just as important is how individual risks combine at the portfolio level: what
is the overall portfolio risk if assets are combined in speci ¢ ways? Real-world
assets are not independent; some may zig as others zag. This is the fundamental
idea behind the concept diversi cation: the overall portfolio risk may bkessthan
the sum of the risks of the individual assets that constitute it.

These ideas are summarizedHig. 1.1, which illustrates two hypothetical indi-
vidual assets, "government bonds' and “stocks', on the risk—return plane. These two
assets are assumed to have well-de ned risk and return characteristics. The gure
also illustrates the notion of “ef cient frontier”, which traces out the risk and return
characteristics gbortfoliosmixing the individual assets in speci ¢ proportions. The

1 Assuming that the bond is denominated in the country’s national currency.

N. Chapads Portfolio Choice Problems: Amtroductory Survey of Single and 1
Multiperiod Models SpringerBriefs in Electrical and Computer Engineering 3,
DOI 10.1007/978-1-4614-0577-1_1, © The Author 2011
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level. Intermediate portfolios,

mixing stocks and bonds, may

exhibit lower risk than indi- Bonds

vidual assets, a consequence
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key insight of diversi cation appears in plain sight: there exists portfolios whose risk

is lower than either asset, but with better returns than the single lowest-risk asset.
The rst quantitative treatment of diversi cation in portfolios of assets is due

to the seminal paper of Markowitz (1952), who introduced, among other concepts,

the notion of the ef cient frontier on the risk—return plane; the methodology intro-

duced by Markowitz, and perfected ever since by countless others, has been called

Modern Portfolio TheoryNiPT). However, an intuitive understanding of the bene-

ts of diversi cation came much earlier. As Rubinstein (2002), in his half-century

retrospective of Markowitz's paper, observes,

Markowitz was hardly the rstto consider the desirability of diversi cation. Daniel Bernoulli

in his famous 1738 article about the St. Petersburg Paradox argues by example that risk-
averse investors will want to diversify: “... it is advisable to divide goods which are exposed
to some small danger into several portions rather than to risk them all together” (Bernoulli,
1738). As Markowitz (1999) himself points out in his historical review of portfolio theory,
Bernoulli is also not the rst to appreciate the bene ts of diversi cation. For example, in
The Merchant of Venigé\ct |, Scene |, William Shakespeare has Antonio say:

“. .. Ithank my fortune for it,

My ventures are not in one bottom trusted,
Nor to one place; nor is my whole estate
Upon the fortune of this present year . . .”

Although this turns out to be a mistaken security, Antonio rests easy at the beginning of the
play because he is diversi ed across ships, places, and time.

Until Markowitz (1952), portfolio choice was approached on a “bottom-up” ba-
sis: each constituent (e.g. stock, bond) of the portfolio was chosen for its own risk
and return characteristics, without regard for its interaction with the rest of the port-
folio.2 However, due to diversi cation effects, this simple form of analysis is in-

2 Variance had been considered as a measure of nancial risk as early as 1906 by Fisher (Fisher,
1906).
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suf cient: the decision to hold a security should not only depend on a simple com-
parison of its expected risk and return pro le to that of other securities, but also on
its marginal impacton the risk—return pro le of the investor's entire portfolio. Put
differently, the decision to hold a security cannot be made in isolation, but is con-
tingent upon the other securities that the investor already holds (or wants to hold).
Earlier treatments of security analysis, including such classics as Graham and Dodd
(1934) and Williams (1938), lack this perspective.

Myopia Dystopia

The original portfolio choice formulation by Markowitz has the investor make all
her forecasts, of expected asset returns and covariances between them as we shall
see in Chapter 2, at the start of an investment period, and then lets the investor rest
until the end of the period. In particular, the investor is “prohibited” from tinkering
with the allocations until the start of the next period. When that time comes, she
acts as though any previous period never existed, or any further period will never
exist: decisions are made strictly one period at a time. For this reason, Markowitz's
formulation is callecsingle-period

Itis also called “myopic”, referring to the inability of the investor to see beyond
the immediate future and anticipate future opportunities. Obviously, in practice, in-
vestors do not all die after one period, and a huge assortment of stratagems are
employed to “repair” the single-period formulation to varying degrees and make it
better re ect reality; Chapter 2 covers the most common ones.

However, even these xes are insuf cient since they do not re ect the fact that in-
vestment is, fundamentally, an extended process. The asset universe provides chang-
ing opportunities, some of which can be anticipated in advance. Perhaps the in-
vestor could want to consume a portion of her wealth along the way, or receives
income from non-investment sources, changing the investable capital in known (or
unknown) ways. Moreover, frictions abound in the process: there are costs to every
trade, and governments are prompt to ask for a commission on any good deed (also
known as “taxes”). Planning ahead for these contingencies, in fact for the complete
future set of contingencies weighted by their probabilities, requires a drastically dif-
ferent viewpoint than that afforded by single-period approaches. They lead to the
multiperiod formulations, rst analyzed by Mossin (1968), Samuelson (1969) and
Merton (1969) (see 83/p. 37).

A special group of investors commands speci ¢ requirements: thémstitu-
tional investorsin particular mutual or hedge fund managers operating in a com-
petitive environment. Their main characteristic is that they are not only interested
in maximizing the utility of their client's nal wealth, but also in optimizing the
trajectory that wealth takes to reach its nal destination. Consider, for instance, a
client choosing between two competitive funds offering similar returns; assuming
that other fund characteristics are identical (including the stated investment risk pro-
le), the client could well favor the fund having the “nicer” past return character-
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istics, where “nice” may not only include the variance of returns but more global
criteria such as thdrawdown

Furthermore, on a day-to-day basis, the fund manager does not only care about
how he will perform at the end of a long horizon, but how he is performigigt
now. It is a tired Wall Street cliché to state that “you are only as good as your last
market call.” Tired, perhaps, but a plea for help from practitioners that has seemed
relatively ignored by academics.

Regrettably, the traditional multiperiod formulations outlined previously turn out
to be unsatisfactory for the demands of institutional fund management. As stated,
a fund manager operating in a competitive market cares as much about the path as
about the nal outcomé.In other words, the realized performance picture must be
as rosy as possible, for as much of the time as possible, because clients can choose
to join and leave the fund on a fairly unrestricted b&diowever, and this is a fatal
mismatch, the utility functions assumed by the classical multiperiod solutions to the
portfolio choice problem ignore these considerations and focus exclusively on the
distribution of terminal wealth (generally in conjunction with an intermediate stream
of consumption, which may be appropriate for a University endowment fund, but is
irrelevant for a hedge fund or mutual fund manager). We argue that practitioners
care about more dimensions of the picture than what has generally been assumed in
the literature so far.

1.1 Overview

This work aims to review the main classical results about optimal portfolio con-
struction, adopting a mostly-thematic rather than chronological perspective.

We start, in Chapter 2, with the classical single-period “modern portfolio the-
ory” of Markowitz (1952; 1959) and its numerous re nements (82/p. 7), including
utility function variants, problem constraints, mean and covariance forecasting and
econometric issues.

We then proceed, in Chapter 3, to the multiperiod and continuous-time formu-
lations rst studied by Mossin, Samuelson and Merton. A customary emphasis in
this context has been to understand the structure of optimal solutions (under suitably
analytically-tractable simpli cations) and we shall examine the most enlightening
of them.

Finally, straying from the traditional dynamic programming setting generally as-
sumed in nance, we examine in Chapter 4 various “direct” and alternative criteria
for portfolio choice, including stochastic programming and reinforcement learning,
mainly studied in the machine learning and operations research communities.

3 Other institutional investors, such as those working for de ned-bene t pension funds, insurance
companies, foundations and endowments are generally not subject to such stringent constraints.
4 Although the nancial panic of the Fall of 2008 has made long fund lock-up periods fashionable
again, the trend until that point had been for lock-ups to become shorter in the competitive hedge
fund industry, several funds offering redemptions with a 30-day notice or less.
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. Dt . Dt+1
, Peﬂodt { z Pel’l?fjt+ 1 (
R R R+1
| | | -
1 i i =
| z } | z } Time
R R+ 1

Fig. 1.2 lllustration of the time conventions followed in this document.

1.2 Basic De nitions and Notation

1.2.1 Simple Returns

In this work, we mostly consider the discrete-time scenario, in wbieh period
(e.g. one day or one month) elapses between timaglt + 1, wheret 2 N. We
de ne periodt to be the one elapsed between timesl andt; seeFigure 1.2.

Letf Rg;R 2 R+ be arandom asset price process. We shall adopt the convention
that any variable subscripted by a time indegan be measured given the set of
information available at timg which we denoté ;.

De nition 1. Thesimple rate of return of an asset during peridds given by

R
=— 1L
R R
For a dividend-paying asset, we consider dividends at tirg, to be paidm-
mediately beforeecording price?. The simple return taking dividends into account

is
_ R+ Dy

1:
R 1

R

1.2.2 Risk-Free Asset

We denote by the rate of return earned by the risk-free asset (for instance, short-
term government bonds).

1.2.3 Other Conventions

As much as possible, we attempt to adhere to the following notational conventions:
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Matrices and vectors are typesetiald face scalar variables are setiiiralics.
Thei-th element of vectov is v;; thei; j-th element of matriM is Mj;j. Thei-th

row of the matrix isM; and thej-th column isM ;.

Matrix and vector transposition is indicated b$@rime).

M 0 indicates that matri¥ is positive-de nite;M 0 indicates that matrix

M is semipositive-de nite.

It is sometimes useful to denote a vector of ones, whose size is appropriate given
the context. We denote such a vector by the Greek letteriiota,



Chapter 2
Single-Period Problems

Risk is a part of God's game, alike for men and nations.
— Warren Buffett

N THE SINGLE-PERIOD portfolio choice problem, the investor is assumed to
make allocation decisions once and for all at the beginning of a given period

(e.g. one quarter or one year), based on estimated prospects for the risk and return
relationships of a universe of investable assets over the horizon. Once made, the
allocation decisions are not allowed to change until the end of the period; the impact
of decisions arising in subsequent periods is not considered in this case, and for this
reason, single-period problems lead to so-catig@picpolicies. Markowitz (1952)
introduced the basic formulation, including expressions for the expected portfolio
return and variance in terms of the portfolio weights and expected returns, variances
and covariances of individual assets. He also introducedftbient frontier and its
depiction on the mean-variance plane. Since the original formulation uses the asset
variances (and covariances) as the risk measure, the methodology is often called
mean-variance allocation

Despite their original conceptual simplicity, single-period problems are a large
topic in which the optimization step is but one aspect. Just as important are the
choice of utility function (82.4/p. 11), risk measures (82.5/p. 14), problem con-
straints (82.6/p. 17) and forecasting models (82.7/p. 23). Moreover, delicate issues
related to the stability and econometrics of the obtained solutions need to be ad-
dressed for a successful implementation of the approach (82.8/p. 29). This entails a
rather involved methodology for single-period portfolio choice, which can be sum-
marized byFig. 2.1.

2.1 Basic Formulation

Let Ri+1 2 RN be a vector of randorasset returndetween times andt + 1 (see
81.2/p. 5 for a summary of the time index conventions). Assume that the investor

N. Chapads Portfolio Choice Problems: Amtroductory Survey of Single and 7
Multiperiod Models SpringerBriefs in Electrical and Computer Engineering 3,
DOI 10.1007/978-1-4614-0577-1_2, © The Author 2011
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Expected Return
3 Model

v

] Risk-Return

> Risk Model Efficient Frontier

Portfolio Optimization >

A

A

»| Portfolio Constraints v
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\ 7 \ v

»|  Optimal Portfolio

Y
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Robustness Analysis

Fig. 2.1 Methodological steps surrounding the Markowitz single-period investment process;
adapted from Exhibit 2.2 (p. 21) of Fabo=ztial. (2006).

makes, given the information available at titpa forecast of the rst two moments
of the distribution of future returns,

My it = Et[Res 1]
St+1t = Com[Ri+1];

where theE;[ ] and Coy[ ] denote, respectively, the expectation and covariance ma-
trix of a (vector) random variable conditioned on the information available atttime
For simplicity in this section, since single-period modeling does not explicitly con-
sider the consequences of time, we drop the time subscripts on the above quantities,
which we write simply afk, mandS. Likewise, the return on the risk-free asset
during the period is denoted 5.

The investor allocates its capital among Massets, forming a portfoliw 2 RN
where each elememi;, theweightof asset, represents the fraction of total capital
held in the asset. The expected portfolio return and variance are given respectively

by
m = wn and s3=whsw: (2.1)

We shall make the following assumptions about the assets:

1. There are no “redundant” assets, i.e. no asset return can be obtained as a linear
combination of the returns of other assets.

2. All assets are risky (have positive return variance), which implies, in conjunction
with the above assumption, that the covariance maris nonsingular. (The
inclusion of a risk-free asset is treated in 82.4/p. 11.)
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De nition 2 (Ef ciency). A portfolio w is said to beef cient if it is the lowest-
variance portfolio for a given level of expected return.

The portfolio choice problem seeks to directly nd ef cient portfolios by deter-
mining an “optimal” vector of asset weights. The minimum-variance formulation
of the problem considers the expected portfolio variance as the measure of risk. It
takes the form

w = argmin}WOSW (2.2)

w2
subjectto win=r; (2.3)
wl = 1 (2.4)

The objective function, eq. (2.2), seeks the vector of weights which minimizes the
total expected portfolio variance, subject to constraint (2.3) which requires a port-
folio return of r (which can be viewed as the desired or target return), and con-
straint (2.4) which speci es that all capital must be invested. We consider other types
of constraints — and their implication on the solution methods — in §2.6/p. 17.

2.2 Solution

Since all constraints are of equality type, problem (2.2) can be solved analytically
by introducing Lagrange multipliers. The general solution is derived in 8A.1/p. 71.
To borrow notation from that section, we set

Az?}.o b= '

and obtain the optimal weightg8 by substitution into eq. (A.10). Some algebraic
manipulation yields the somewhat simpli ed but enlightening form, showing the
optimal weightsw as being linear in the desired return(Merton, 1972; Fabozzi
et al, 2007)

w =g+ hr; (2.5)

where

_S Yci bm) he S Yam bi)

d ' d '
and
a=i% %; b=i% Im c=nfS 'm d=ac b%

Similarly, the globally minimum-variance portfolias{1v) is obtained without
imposing the expected-return constraint, yielding portfolio weights and variance
respectively given by
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Fig. 2.2 Ef cient frontier obtained from four assets speci ed in the text; the Global Minimum
Variance (GMV) portfolio has a lower risk (as measured by the standard deviation of returns) than
any individual asset, showing the bene ts of diversi cation.

_ S 2 1 .

The above solutions yield two important insights. First, as will be illustrated next,
it re ects the bene ts of diversi cation. Second, it highlights that ultimately, higher
returns can only be obtained by taking on higher leverage — thence more risk —
since the optimal weight vector is linear in the target return

To illustrate these solutions, consider a four-asset problem speci ed as

20005 °0.0380 00085 00089 00066
. go:o7 _ 8:30:0085 00331 00156 0003%
0:0905° 0:0089 00156 00334 Q007G
0:075 0:0066 00039 00070 00240

The ef cient frontier for this example is plotted Fig. 2.2 under the label “Ef cient
Frontier (no risk-free asset)”.
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2.3 Risk-Free Asset, Tangency Portfolio, Separation

When one of the assets can be considered risk-free (i.e. a return variance of zero and
necessarily an identically zero covariance with all other assets), the above formula-
tion cannot be used directly since the covariance m&nxould not be invertible.
In this context, it can be shown that all ef cient portfolios are formed by a linear
combination of the risk-free asset and thegency portfolidocated on the risky-
assets ef cient frontier. These portfolios are located on what is known as the Capital
Market Line €ML). These concepts, for a risk-free rate of 5%, are depicted on
Fig. 2.2.

As derived in 8A.2/p. 72, the risky-asset proportions of the tangency portfolio,
given a risk-free rat&s, are obtained as

wrep= S Hm R
i%S Im Ry)

A central consequence of the ef ciency of all portfolios along theL is that it

is optimal for all investors (who share a common view abow@ndS) to hold the
tangency portfolio in some proportiomvestors only differ in their exposure to it, or
alternatively, in how they allocate their holdings between the risk-free and tangency
portfolio. This result was originally established by Tobin (1958) (see also Merton
(1990, ch. 2)) and is an examples#parationor mutual fundtheorems.

In the presence of a risk-free asset, portfolio optimization problems can be for-
mulated without insisting on the “sum-to-one” constraint (2.4), since the unallocated
fraction of capital, 1 w4, can be invested in the risk-free asset (or assumed to be
borrowable at the risk-free rate in the case of a negative fraction).

Geometrically, fronfig. 2.2 the tangency portfolio can also be seen to maximize
theSharpe ratiqSharpe 1966, 1994), de ned as the expected portfolio excess return
(over the risk-free rat®s) per unit of portfolio return standard deviation,

4 M Ry
Sp

SR

with mp andsp given by eq. (2.1). A formal derivation of the relationship between
the Sharpe ratio and the tangency portfolio appears in 8A.2/p. 72.

2.4 Utility Maximization

Problem (2.2) does not specify what the “appropriate” level of target retstrould
be; this question should be decided by the investor and is a direct function of the risk

1 This result also serves as a foundation for the celebrated Capital Asset Pricing Made)(
which assumes, among other things, that all investors do share common viewsnabml$, and
examines equilibrium consequences; see §2.7.1/p. 23.
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s/he iswilling andableto bear. Markowitz (1959) introduces a formulation wherein
the investor's expected utility is directly maximized. He considered the following
quadratic form, written in terms of the portfolio retura,

Ui (Re)= Re DR

wherel is represents the investorisk aversionand in this context quanti es how
the investor is willing to trade each incremental unit of expected return against a
corresponding increase in variance of retéirn.

A rational decision maker would seek to maximizedipected utilitywhich is
computed as

|2
—=S
m32p

wm IEWOS W,

E[U (Re)]

wherew is, as above, the weight given on each asset within the portfoliorarehd
s are respectively the mean and variance of the portfolio return distribution, given
by eq. (2.1). The expected quadratic utility maximization problem is then written as

w = argmaw’h IEWOSW (2.7)
w

subjectto wd = 1: (2.8)

When no further constraint is imposed, an analytical solutiomfois easily found
by introducing Lagrange multipliers, similarly to the solution for problem (2.2).

Proposition 1. The unconstrained minimum-variance portfqo2)-(2.3)and max-
imum quadratic utility(2.7) formulations are equivalent.

Proof. The equality constraint (2.3) is incorporated in the minimum-variance objec-
tive (2.2) through an unconstrained Lagrange multipli@rR, yielding the problem

rr\lnin%WOSw n(whm r);

with rst-order conditions for optimality given bgw nm= 0, yielding optimal
solution
w =nS 'm (2.9)

, . o
wheren is found by substitution as = o T

2 Many formulations of utility theory focus on the utility términal wealthinstead of the portfolio
return; Markowitz explicitly considers the latter (e.g. Markowitz 1959, p. 208), and this convention
is almost universally followed in mean-variance problems. An alternative formulation of quadratic
utility in terms of terminal wealth would slightly change the resulting equations.

3 See, e.g. Chapados (2000) for a derivation.



2.4 Utility Maximization 13

Consider, on the other hand, the rst-order optimality conditions of problem
(2.7),m 1S w= 0, yielding optimal solution
1c1

w = —S

=S tm (2.10)

Comparing eq. (2.9) and (2.10), it suf ces to take= nfS n¥r to obtain the
equivalence. u

This result con rms that in order to target a higher expected portfolio ratyrn
the investor must exhibit a lower risk aversion.

Obviously, quadratic utility is but one of a number of utility functions that have
been proposed to model the behavior of economic agents. The more general problem
is easily written in terms of expected utility maximization,

Z
W = argmax RU(W(‘R) dP(R); (2.11)
w

subject to the budget constraint (2.8), wherg) is a utility function andP(R) is
the next-period return distribution. In particular, Mossin (1968) proves that constant
relative risk aversiondrRRA) functiong are the only ones permitted if constant as-
set proportions are to be optimal, i.e. the investment in the risky asset does not
depend on the level of initial wealth. Merton (1969) establishes the same result in
a continuous-time setting. Moreover, Campbell and Viceira (2002) strongly argue
in favor of CRRA utilities on the basis of the long-run observed behavior of the
economy. However, for a large number of utility functions and “reasonable” return
distributions, several studies (Levy and Markowitz, 1979; Kallberg and Ziemba,
1983) have established that single-period optimal portfolios under quadratic utility
are very close to those obtained under alternative utilities.

A special case of some interest is the logarithmic utility, de nedJ4®) =
log(1+ R). This utility function is maximized by considering a Taylor series ex-
pansion of + RaroundR= 0,

log(1+ R) = R §+ O(R%):

For relatively small returns, this is seen to be equivalent to the maximization of
guadratic utility, problem (2.7), with = 1. The optimal weights under this utility
function are given precisely by the tangency portfolio for a risk-free rate of zero
(which also maximizes the Sharpe Ratio, see §A.2/p. 72). This property led some
authors to confer a special aura to the logarithmic utility as being somehow “better”,

4 For a utility functionU (W), the Arrow—Pratt measure of relative risk aversion (Arrow, 1965;
Pratt, 1964) is de ned as
Wu%w)

uqw) -

A cRRA utility function is one for which RRAW) is a constant independent\f. Such functions
are sometimes said to exhilgb-elastic marginal utility

RRAW) =
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a point discussed, and found to be fallacious in a multiperiod setting, by Merton and
Samuelson (1974). We return to the logarithmic utility in 83.4/p. 49.

Some utility functions have been proposed to incorporate parameter estimation
uncertainty, the subject ebbust optimizationwhich is covered in §2.8.5/p. 34.

2.5 Risk Measures

The exposition so far assumes that the investor considers the variance of the port-
folio return distribution to be an adequate measure of risk. This measure has the
major shortcoming that it considers positive return surprises to be as equally un-
pleasant as negative return surprises, a property that would surely be dismissed by
most real-world investors! A number of alternative measures have been proposed
throughout the years that attempt to quangfyrtfolio downside riskstarting with
Markowitz's original treatment of the semivariance. This section brie y reviews the
most signi cant possibilities. Nawrocki (1999) surveys the eld more extensively.

2.5.1 Semivariance

Semivariance was originally considered by Markowitz (1959, Chapter 9) as a simple
measure of downside risk. Whereas the variance is a symmetrical measure, semivari-
ance only considers movements that fall below the mean; as such, its value depends
on theskewnesgthird moment) of the distribution. For a scalar random variable
with meanm, semivariance is de ned as
h i
2 _ ; 2.
Smin= E min[X mO0]° :

This measure can be used instead of portfolio variance in Problem (2.2). Although
there is no closed-form solution to the mean-semivariance probleret din2006)
establish the existence of the one-period mean-semivariance ef cient frontier and re-
view the literature examining its applications. Furthermore, Estrada (2007) provides
an approximation to the semivariance that lends itself well to analytical solutions
and reports good results on a number of problems.

2.5.2 Roy's Safety First

The Roy (1952) “safety- rst” criterion puts portfolio risk in a more concrete setting

than Markowitz' consideration of the second moment of returns. As Roy argued,
the investor rst decides on a minimum acceptable return that would ensure the
preservation of a desired portion of his capital; he then proceeds with portfolio opti-
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mization by minimizing the probability of experiencing a return below the “disaster
level”. Let Ry be the investor's minimum acceptable return and consider the problem

minimize P(Rp  Ro)
subjecttowd = 1 (budget)

Since the return distribution probability is not known precisely, this minimization
may appear unfeasible. However, by Chebyshev's inequality, we have

sg .
(M Ry)?’

which, taking square roots, yields the approximate problem

P(Rr Ro)

min Sp
w mp Ro

subject to the budget constraint. If tRg is the risk-free rate, this problem is equiv-
alent to maximizing the Sharpe ratio (Sharpe, 1966).

2.5.3 Value-at-Risk

Value-at-Risk (VaR) was developed by JP Morgan in the early 1990's and made
popular in a widely-circulated technical document (RiskMetrics, 1996) and asso-
ciated software product. Intuitively, the levalVaR (e.g.a = 95%) of a portfolio

over a certain time horizoh is the portfolio returnRp such that the fractioa of
returns will be better thaRp over the horizon. More formally, the leval-VaR of a
portfolio is de ned as the 1 a-percentile of the portfolio return distribution,

VaRa(Re)= inffR:P(Re R ag;

where all returns are computed over horizon(The minus sign in the de nition
serves to make the risk measure positive.) The location of the VaR of an hypothetical
asset return distribution, and its relationship to the CVaR (treated next) is shown in
Fig. 2.3.

Value-at-Risk is regarded as a more plausible measure of portfolio risk than the
variance since it accounts (in theory) for skewness and kurtosis in the return distri-
bution® In addition to its origins in risk management, it has received wide attention
in a portfolio choice context where the VaR simply substitutes for the variance as
the risk measure (Alexander and Baptista, 2002; Mitetilal, 2003; Chow and
Kritzman, 2002; Chapados, 2000).

5 In practice, it is common to compute the VaR under a normal approximation due to its analytical
tractability, which of course disregards higher-order moments in the underlying true distribution.



16 2 Single-Period Problems

Fig. 2.3 90% Value-at-Risk CVaR  VaR

(VaR) and Conditional Value-
at-Risk (CVaR) for a Student
t(3) distribution. For fat-tailed
distributions, the CVaR point
can represent an expected loss
much more signi cant than

the VaR.

2.5.4 Conditional Value-at-Risk

In spite of its wide use, the VaR, as a measure of risk, suffers from a major defect: its
lack of subadditivity(Artzneret al., 1999). For a risk measureapplied to portfolios
P, andP,, subadditivity is satis ed if

r(PL+Ry)  r(P)+r(R);

which is a statement of the bene ts of diversi cation—the risk of a diversi ed port-
folio cannot be more than the risk of any of its constituents. That the VaR does not
satisfy this property can lead to a number of counterintuitive results, particularly for
rm-wide risk management, where it can appear that a more diversi ed portfolio
exhibits a higher risk (Rau-Bredow, 2004).

A closely related measure that does satisfy subadditivity isdinelitional value
at risk (CVaR)—also calle@éxpected shortfalbr expected tail loss-de ned as the
expected return conditional on observing a return lower than the VaR:

CVaR: (Rp) = E[RpjRp < VaRa (Rp)];

where, as for the VaR, the returns are computed over a given time hdriZon

Fig. 2.3 this corresponds to an expectation taken within the shaded area. In a port-
folio context, the CVaR has been studied by Krokhmeiahl. (2002) and Consigli
(2004).

2.5.5 Other Measures

In the past few years, there has been an explosion of alternative risk measures based
on the modeling of tail phenomena (e.g. Malevergne and Sornette 2005a). Although
it is not our focus to describe them in depth, Rackéewal. (2005) provide a good
survey of the relevant literature, especially of measures related to portfolio selection.
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Farinelliet al. (2006) provide computational portfolio allocation results comparing
eleven alternative performance measure ratios.

2.6 Additional Constraints

Portfolio optimization problems, regardless of the form of the objective function or
type of risk measure, are often solved with a number of constraints that attempt to
capturea priori knowledge that the analyst possesses on what should be “good”
solutions, embody investment objectives of the fund, or comply with regulatory re-
quirements. It should be noted that with most of these constraints, Problem (2.2) can
no longer be solved analytically but must instead be tackled with quadratic program-
ming (Luenberger and Ye, 2007; Bertsekas, 2000) or mixed-integer programming
(Wolsey and Nemhauser, 1999). Constraints also plagalarizationrole that can
serve to mitigate sampling variance and estimation error in the mean return and risk
forecasts; this is covered in §2.8/p. 29.

Some of the more common constraints are as follows. More comprehensive treat-
ments appear in Fabozet al. (2006) and Qiaret al. (2007). In line with the rst
reference, the rest of this section makes use of the following notation: we denote
the current holdings of an investor kg, the target holdings to be invested over the
next period (i.e. the variables resulting from optimization)gyand their difference
(the traded amount in each assetiy w  wo.6 Furthermore, lepo be the current
price vector of the assets, ag the current total portfolio value. The amount to be
invested in asseétis given byWow; and the number of sharekeld isn; = Wow; =pg;.

2.6.1 No Short-Sales Constraint

This corresponds to the requirement that all portfolio weights be non-negative,
namely
wi 0; foralli;

6 The absolute traded amouj®j = jw  wgj, shall be of signi cance, especially when considering
transaction costs. The usual way of incorporating a term of this kind in a mathematical program is
to introduce two variables,

X" =w wp and X =W W
along with the constraints
x* 0 and x 0

and use the suxi* + x whenevejjxj appears.
7 Assuming stocks as the assets.
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thereby prohibiting selling assets short. Regulatory constraints placed on mutual
fund managers often mandate such a constraint. Markowitz' original formulation
of the portfolio choice problem included those constraints as an integral part of his
solution method, and many introductory treatments of the tReéagfude them by
default, despite the impossibility of deriving an analytical solution for the optimal
portfolio weights in their presence.

2.6.2 Turnover and Transaction Costs Constraints

For large institutional portfolios, transaction costs can represent a sizable portion of
total operational costs, especially for funds that takective managemei(Grinold

and Kahn, 2000) approach as opposed to a passive index-tracking objective. As
such, we may incorporate constraints that attempt to minimize the relative or dollar

turnover on individual assets, respectively

jxij U and Wojxij  Ui;

or the complete portfolio
o . .
alxij Ue
i

Itis also possible to directly incorporaransaction costito the objective function
as a term to be minimized. In its simplest form, a transaction cost model simply
imposes a proportional cost on the absolute value of traded quantities,

prop cost= WoCijxij;
and the total portfolio cost given by

propcoss = Wo @ cijxij; (2.12)
i

wherec; is the proportional cost of trading assef\sssuming allc; andWg are non-
negative, prop costis nonnegative and hence the imposition of transaction costs
penalizes portfolio performance. To understand their consequence on realized re-
turns, letp; be the asset prices at the end of the investment period and consider the

relative return on assét
P1i  Poi

r= ——:

Poi
Transaction costs affect portfolio return as

8 E.g. Bodieet al. (2004).

9 Non-negativity constraints can be seen as the “great divide” in optimization between analytical
and non-analytical solutions; in the case of portfolio optimization, the latter require, as mentioned
above, solution by quadratic programming.
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o _ b1 poi WbCijxij
Poi

ri V\f/‘?CiJ’XiJ’ = T NiCijXij
Poi

==
|

ri Cijxij;

where it is obvious that they adjust the portfolio relative return by a term propor-
tional to the traded amount. Their effect can then directly be incorporated into the
objective function for the quadratic utility maximization formulation, yielding the
problem

w = argmaxw’ 9w wg | wsSw (2.13)
w

subjectto wd = 1: (2.14)

The proportional costs structure is, however, only a starting point. As pointed
out by Kissell and Glantz (2003), the totality of trading costs can be broken down
according to an elaborate taxonomy that incluebgdicit (measurable) costs as well
as more insidiousnplicit ones. Without delving into an intricate description, we can
summarize them as follows:

Explicit Costs  They includexed costs in the form of commissions (as outlined
above) and fees (custodial fees, transfer fees). They also inchrdible costs
in the form of bid—ask spread (the difference between the price at which one can
buy versus sell) and taxé8.

Implicit Costs  They includeelay cos(time between which a decision is made—
for instance, by an allocation committee—and the actual trade is brought to the
market) price movement riseffect of underlying trends affecting the asset to be
traded) market impact cost&eviation of the transaction price from the market
price that would have prevailed had the trade not occurt@d)ng risk (cost
attributable to general market volatility)pportunity cos{cost of not trading or
not completing a trade).

Some of the implicit costs may not be costs at all but the source of trading pro ts
depending on market conditions. A study by Wagner and Edwards (1998) shows that
the price impact of a liquidity-demanding trddaverages 103 basis point€ on a
set of some 700,000 trades by more than 50 management rms in 1996, whereas the
price impact of a liquidity-supplying trade generafed ts of + 36 basis points. In a
liquidity-neutral market, the average price impact w&3 basis points. The effects
of other implicit costs can likewise be decomposed according to market conditions.

There is a vast literature on transaction costs models, including how realistic non-
linear models of costs can be incorporated in asset-allocation models. This literature
is well reviewed by Fabozat al. (2006, ch. 3).

10 The proportional costs structure introduced previously can be seen as an adequate model of
bid—ask spread, the most signi cant explicit cost for an institutional investor.

11 For example, a “buy” trade executed when there are signi cantly more buyers than sellers.
12 A basis point(bp) is one hundredth of one percent, i.e. 106bp%.
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2.6.3 Maximum Holdings Constraint

To ensure that the portfolio is not overly concentrated in a single asset, we can
impose a constraint of the form

L w U
whereL andU are vectors specifying, respectively, the allowable lower and upper

of asset indices) is not unduly weighted in the portfolio by imposing

Ls Aaw Us;
i2s
with Ls andUs denoting, respectively, the minimum and maximum exposure to
the sector.

2.6.4 Maximum Tracking Error and Factor Exposure Constraint

The performance of portfolio managers is often compared to thatbeihahmark

such as the S&P 500 (Grinold and Kahn, 2000). Depending on the fund's style,
the manager may seek to replicate the benchmark as closely as possible (using,
for instance, a smaller number of assets than the benchmark), or to provide addi-
tional performance (the so-called “alpha”) at the expense of takingctise risk
namely, deviating from the benchmark. This risk is quanti ed byttheking error,

de ned next. Assume that the benchmark's and fund's investable universe are the
same and that the (random) asset returns are givéh hyt wy, denote the bench-

mark weights,w the decision variables, ari®s and Rr denote, respectively, the
benchmark and portfolio returns,

Rs = W3R and Rer = WwR:

The tracking error is simply the variance of the return difference between the bench-
mark and the invested portfolid,

TEp= VaiRe  Re]
= Varfw3R wR]
=(wg wW)S(wg w);

with S the asset return covariance matrix. A quadratic tracking error constraint of
the form

13 More accuratelytracking erroris usually reserved for the square-root of this variance, but for
notational simplicity, we shall omit the square-roots in this overview.
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wg w)Swsg w) s

can then be imposed to limit active risk. Note that this does not liotél risk,
which would require additional constraints (Jorion, 2003).

In an analogous manner, one can restrict exposure to speci c risk factors. Sup-
pose that we posit the following decomposition éxplainingthe return of asset
as a linear combination of factors (additional background on factor models is given
in 8§2.7/p. 23),

M
R=ai+  bijFj+e;
i=1

whereF; is the random “return” associated with factpf* during the period, and
bi;; is the exposure of asseto factor j. This is written more succinctly as

R=a+BF+e

with B andF respectively the matrix of factor exposures and the vector of one-period
factor returns. This yields a portfolio return, given asset weightsf

R = wh + wBF+ w%:

The exposure of the portfolio to factgris given by&;w;ib;;;. Bound or equality
constraints may be placed on this exposure; for example, to enseaxresateneutral
exposure to factoj one may impose

éWibi;j =0
i

Such constraints are commonly used in so-called “long-short equity” hedge funds,
which are designed to be neutral to overall market uctuatitns.

2.6.5 Transaction Size, Cardinality and Round Lot Constraints

The following class of constraints is of a combinatorial nature and necessitates so-
lution by mixed integer programmingnethods (Wolsey and Nemhauser, 1999). For
convenience, we de ne the vectdrof binary indicator variables

1 ifw ; .
d= ! Wi 6 0, i= LN
0, ifw=0;

14 For stocks, examples of likely factors would be the return on a broad market index, the return
difference between growth and value stocks, and the return difference between large- and small-
capitalization stocks; see §2.7/p. 23.

15 For a factor-neutral constraint to make sense, the expobyrenust be standardized to have a
mean of zero across assets.
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where each element speci es whether a position is being taken in the corresponding
asset.

A rst class of combinatorial constraints aims at eliminating positions that are
too small; such positions are often the result of a traditional unconstrained mean—
variance optimization. The manager can require

JWIJ diLWi;

whereLy; is the minimum (relative) position size allowed for assdtikewise a
limit can be set on portfolio trades

with Ly, the minimum allowed trade size for asset
Next, cardinality constraints can be useful in problems that seek to replicate a
benchmark using a smaller number of assets than the original universe. This may
take the form of
dd K

whereK is the maximum number of allowable assets. The impact of cardinality
constraints on the shape of the ef cient frontier is studied by Chetrad. (2000).

Finally, round lotconstraints account for the fact that market-traded instruments
are not in nitely divisible (contrarily to idealizations of nance theory)—it is com-
mon for stocks to be traded in multiples of 100 shares or more. If the lot size for
asset is given by the constark; and the desired number of lots hy (an integer
decision variable), we can enforce

Wow; = Kihipoi; hi2 Z:

In general, when imposing round lots, the budget constréin; = 1, may no
longer be satis able; in this case, one may settle for an approximate budget con-
straint, expressed as

vivoékihipoﬁx+ x =1
i

xtx 0;

hiZZ;

wherex* andx are “slack variables” to be minimized (by incorporating them in
the objective function). Formulations of this type are analyzed by Kelletred.
(2000).
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2.7 Forecasting Models

Markowitz's method of portfolio construction is silent on how the required expected
next-period asset returns and covariances are to be obtained. This section reviews the
most commonly-used approaches in practice, starting faittor modelsand their

uses in covariance modeling and expected return forecasts. We then brie y cover
other expected-return forecasting approaches for equities, mostly badeddemd
discount modelsind accounting ratios. Finally, extensive experience with mean-
variance criteria suggest that they are extremely sensitive to parameter estimation
error—very small changes in the forecasts can yield enormous changes in “optimal”
portfolio weights, leading to doubt about the validity of the portfolios and possible
considerable rebalancing costs when the decisions are implemented. This naturally
paves the way for robust estimation methods and Bayesian approaches; we cover
some of the methods that have been suggested to counter portfolio instability.

2.7.1 Factor Models

Factor models seek to explain tbess-sectiotf of asset returns by a simple af ne
relationship, where the return of asseaiver the period is decomposed into the
return of more elementéctor returns F,

M
Ri=ai+ Q bijF+ ey (2.15)
=1

wherea; is a regression constal;; are the factor exposures, agdis a zero-mean
random unexplained component uncorrelated with factor refdrns.

The grandfather of factor models is the Capital Asset Pricing Madeb (1) of
Sharpe (1964), Lintner (1965) and Mossin (1966); this model is generally derived
from equilibrium considerations aspsitive theoryof collective investor behav-
ior,18 but we shall merely regard it as a simple one-factor model. It expresses the
expected excess retdfhon asset as a linear function of the return of the overall
market portfolio,Ry,

E[R Rf]= biE[Rv Rs];

16 As opposed to the time-series characteristics.

17 1t should be noted that what this literature refers tdfators almost exclusively consist of
observable variables, what would simply be called covariates, explanatory or input variables in a
more traditional statistical context. Latent factors are always referred to as such.

18 |n other words, it seeks to establish what consequences would arise if every investor behaved
according to a set of hypotheses that include Markowitz's rules for portfolio choice among others.
19 The return earned over the risk-free rate.
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where, under theAPM assumptionsa; is identically zerc?°

It has long been understood, at least since Merton (1973), that there exists the
possibility that additional sources @ficed risk on top of the market portfolio,
could impact expected asset returns. Generalizations of Alre1 are obtained in
the context of the Arbitrage Pricing TheoryKT) of Ross (197651 Assume that
asset returns are distributed according to the factor structure of eq. (2.15), along
with

Ele]= E[R]=0
Eleej] = E[eFj] = E[RF]=0; i6 ]
E[e’]= s?< ¥:

In this context, in the absence of arbitrage and under some technical conditions,
Ross showed that the excess return on ddsegiven by

K
E[R Ril= & bi;E[F Ril:
j=1

Under theaPT, each factor represents a priced systematic risk (a risk for which in-
vestors are seeking compensation), and the factor expdsyrgaantify themarket

price of those risks (how much the investor is compensated in expected return for
taking on a unit of risk).

Ross remains silent on how factors should be chosen. In addition toathi
market portfolio factor, severgiricing anomalieshave been documented in the
1980's and early 1990's suggesting additional factors, including long-run price re-
versal (De Bondt and Thaler, 1985), short-run price momentum (Jegadeesh and Tit-
man, 1993), and a variety of effects due to rm size (market eqity, the stock
price times the number of shares), earnings to price r&t), cash- ow to price
ratio (C=P), book value to market valuBE=ME), and past sales growth (Banz,
1981; Basu, 1983; Rosenbesgal, 1985; Lakonisholet al, 1994). These results
built up to an in uential series of papers by Fama and French (1992; 1993; 1995;
1996), who show that the following two additional factors summarize well a number
of empirical ndings:

High-Minus-Low (HML) The difference between the return on a portfolio of
high-book-to-market stocks and the return on a portfolio of low-book-to-market
stocks??

20 Starting from the late-1960's, a huge literature has emerged aiming at testing the validity of the
CAPM; see Campbeltt al. (1997) for an overview.

21 Technically, thecapm is derived from equilibrium considerations whereas Alrg is derived

from a more fundamental “absence of arbitrage” principle; these minutize make little difference
from a statistical estimation standpoint.

22 The precise de nition is slightly technical and appears in Fama and French (1996).
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Small-Minus-Big (SMB) The difference between the return on a portfolio of
small-capitalization stocks and the return on a portfolio of large-capitalization
stocks.

Put together, Fama and French argue that a model of the form
E[R Rf]= biE[Ry Rf]+ SE[SMB]+ hiE[HML]

can account for a large fraction of the cross-section of returns, and obtain times-
series regressioR? in the 0.90-0.95 range. The only factor signi cantly unac-
counted for is the short-run price momentum, which is empirically analyzed by
Carhart (1997).

Since the late 1990's, several large commercial factor models have become avail-
able, the best known of which is perhaps Barra's fundamental multifactor risk model
for United States equities (Barra, 1998), which includes 13 risk indices and 55 in-
dustry groups.

2.7.2 Factor Models in Covariance Matrix Estimation

The estimation of covariance matrices for portfolios of many assets is a hard prob-
lem. As an illustration, consider the Russell 1000 index, whose sample covariance
matrix
§=_1 2 Re MR M°
T 121( t MRy M

contains 500,500 distinct entriéd;an analysis with the tools aandom matrix
theory shows that for such large matrices, only a few eigenvalues of the sample
covariance matrix carry information, the rest being the result of noise (Labaly
1999; Malevergne and Sornette, 2005b). This observation gave rise to a number
of schemes to add structure to the estimator, often relyinghoimkage methods
that attempt to nd an optimal compromise between a restricted and unrestricted
estimators (82.8/p. 29).

An obvious application of factor models is to the estimation of covariance matri-
ces. This approach can be traced back to a suggestion by Sharpe (1963), and relies
on the factor decomposition of eq. (2.15). Assume that rm-speci c residual returns,

g, are uncorrelated for two different rms,

0, i8j;
Eloel= o |
i .

The covariance between retudRsandR; is obtained from eq. (2.15) as

23 Obtained as 1000 1001=2.
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CoMRiRj]= @ CovbixFi;bjuF]+ Cove;ej]

T Qo= T Qoz
(B

=

bi;kbj;kCOV[F;Fj]+ di;jSiz;

whered;;; is the Kronecker delta. This expression illustrates that under a factor
model of returns, the covariance between arbitrary assets depends onlyam the
variance matrix between the individual factpvghich (for the small number of fac-

tors used in practice) is a much more tractable quantity to estimate with statistical
reliability. Current methods for covariance modeling are reviewed by Faleozti
(2006) and Qiaret al. (2007).

2.7.3 Factor Models in Expected Return Estimation

Forecasting expected asset returns is recognized as notoriously dif cult — so much
so that this apparent unforecastability gave rise to the Ef cient Market Hypothesis
(EmMH) and a famous proof that prices should uctuate randomly (Cootner, 1964;
Samuelson, 1965; Fama, 1970). Empirically, it is often observed that the simplest
predictors, a constant based on the historical average return or even the constant
zerg?* perform the best out of sample. More recently, with advances in computing
power and improvements in the quality and quantity of available data, mounting ev-
idence has started to accumulate in favor of seery smallforecastability (Lo and
MacKinlay, 1999), possibly arising from market imperfections. However, exploiting
any residual forecastability, especially when accounting for trading costs, remains
of the utmost challenge.

Factor models can provide some direction in this respect and are generally used
by relating the returns at timewith the observed factors at the same time, and
then positing a dynamical model for making forecasts of the factors themselves.
It is common to utilize a Vector AutoregressiveaR) model for establishing the
dynamics (Hamilton, 1994), yielding an overall forecasting model speci ed as

Ri=a+ bq:t"' eR:t
Fre1= a+ BF+ epe1;
wherea is a vector and is a matrix of rst-order autoregression factors.

An example that has received wide attention is the forecastability of stock returns
by the dividend yield®® Brandt (2004) estimates the following parameters for the

24 Which is surprisingly effective in the case of daily stock returns.

25 The rst evidence is presented in Campbell and Shiller (1988) and Fama and French (1988);
Campbell (1991) presents an interesting decomposition of stock returns wherein he shows that
unexpected stock returns must be associated with changes in expected future dividends or expected
future returns, and attributes a third of the variance in U.S. unexpected returns over the 1927-88
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quarterly returns of the value-weighted CRSPdex
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whererf denotes the log excess return of the index dnd p; is the log dividend

yield, computed from the log of the trailing-twelve-month sum of monthly divi-
dendsd; and the current index leves,.2” In parenthesis are the Newey and West
(1987) standard errors. These results serve to illustrate that whatever forecastability
remains, although statistically signi cant over a long sample, remains low.

2.7.4 Other Expected Return Forecasting Models

A different angle on forecasting models for equities is provided byuhdamental
analysisof a rm'’s fair value. The starting point in this line of study is tkiésidend
discount mode{DDM), introduced by Williams (1938), stating that the price of one
share of stock should be given by the sum of discounted future dividend payments,
" #
& Dt

= E —_—
=B A iR

(2.17)

whereD; is the dividend to be paid in (future) perib@ndR; are discount rate¥

It should be noted that the discount rate is generally higher than the prevailing risk-
free rate and re ects the market's expectations on the prospects of future dividend
payments; a greater risk on the dividend stream entails a higher discount rate. In
other words, it can be viewed as the rate of return that investorgre for bear-

ing the risk of holding the equity. Consider a simpli cation wherein we keep the
discount factor constant (i.e. not time-varying, but still unknown) with v&ad
assume a constant growth ratéor dividends?® Dys 1 = Dy(1+ g) = Dy(1+ g)t 1,

period to the rst component, a third to the second, and the nal third to their covariance. For use
of the dividend yield in an asset allocation context, see e.g. Kandel and Stambaugh (1996) and
Brennaret al. (1997).

26 Center for Research in Security Prices, based at the University of Chieago.crsp.com .

27 The estimation period in this example is from April 1952 to December 1996, and the results are
fairly stable across different estimation periods.

28 This model can be adapted to a simifege cash owrelationship for stocks that do not pay
dividends.

29 This hypothesis is valid, for instance, under the scenario where a business grows its earnings at
a constant rate and maintains the same dividend payout ratio.
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which allows to write
" #
Dt+t+1(1+ g)t 1

¥
R=E 2‘1 (1+ Rt Bt

Dgr1 |
g

Py,

This is referred to as the Gordon (1962) growth model. Now assuming that price
R is observed on the market and tiRindependent oDy~ ; (the latter is generally

a quite well ascertained quantity), the expected implied discount rate—thence the
implied expected return on the security—can be solved for as

E¢[Dt+1]
R

Unfortunately, this model is very sensitive to inaccuracies in its inputs, and for this
reason, so-calletesidual income valuatiomodels RIM) have been proposed that
exploit the fundamental accountirgean surplus relationshifinking the balance
sheet and income statement

E([R] =

+Q

Bi=B 1+ E Dy (2.18)

whereB; is the rm’'s book value per share at timnteandE; the earnings per share
generated during periddThis states that the period-to-period variation in the rm's
value is given by increases resulting from the period activities (net earnings) minus
payments to shareholders (dividends) (Edwards and Bell, 1961; Ohlson, 1995). De-
ne the “abnormal” earnings, assuming a constant discount fdgtas

EZE RB i

in this contextR can be interpreted as the required return on equity expected at the
start of each period. This relationship, in conjunction with eq. (2.18), allows to write
the dividends for periotias

Di= B Bi+(1+RB 1
Substituting in eq. (2.17), we obtain

Dit+1 N Dt+2

= E
=& T0R (1+ R?2
-E Ef 1 B[+1+(1+R)B[+E32 Bt+2+(l+R)Bt+1+
L LR, (1+ R)?
¥ Ea
“B+E 2 t+t
BB A TRy
- B+E s Bt RBut 1

a
21 (I+ R
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Under some assumptions, Philips (2003) derives the following expression for the

expected returns

Et[Eeea] 0B
R

whereR andB; are readily available anH;. 1 is often estimated by analysts that
follow a stock®® The growth rateg can conservatively be taken as the growth of
nominal GDP! Claus and Thomas (2001) nd relationships based on residual in-
come valuations to be much less sensitive to errors than the Gordon model.

The topic of expected return forecasts is much richer than this brief overview can
provide. In particular, we must omit treatment of a sizable literature on the infor-
mation regarding the implied probability distribution of returns that option markets
provide (e.g. Pan and Poteshman 2006; Ait-Sahalia and Brandt 2007). A review of
several recently-proposed methodologies for forecasting expected returns appears
in Satchell (2007).

B[R] = g

2.8 Forecast Stability and Econometric Issues

A longstanding critique of Markowitz's mean-variance method of portfolio choice
stems from the often-observed erratic nature of the optimal weights: unless expected
returns are “perfectly matched” to the covariance matrix, it is frequent to arrive at
corner solutionavherein a small number of assets get allocated most of the weight,
with problem constraints strongly governing the obtained solution. It almost appears
as if the theory's foundational goal ef cient diversi cation of investmert some-

how gets lost along the way. Moreover, the obtained solutions tend to be unstable,
both cross-sectionally (small changes to the forecasts have a large impact on the
weights) and over time (optimal portfolios often change drastically from one period
to the next, leading to important costs due to turnover).

Michaud (1989) argues that extreme and unstable portfolio weights are inher-
ent to mean-variance optimizers due to forecast estimation error: by virtue of mere
statistical uctuation, large positive (negative) weights are assigned to assets that
have large positive (negative) estimation error in expected return and/or large neg-
ative (positive) error in variance. This arises because in the classical mean-variance

30 Analyst forecasts of earnings have themselves long been subject to investigation, including
the early work of Crich eldet al. (1978) and Givoly and Lakonishok (1984), who generally nd
forecasts to improve as the earnings publication date approaches. More recently, Friesen and Weller
(2006) consider a Bayesian framework in which analysts constantly revise their forecasts based on
newly-revised information; in this context, the authors report strong evidence of biases, including
overcon dence and cognitive dissonance biases.

31 For rms whose capital structure consists of a mixture of equity and debt, this is indeed a very
conservative assumption. The growth rate of nominal GDP would normally characterize the return
on the rm's assetsIn contrast, the return oequity—the quantity represented lmy—would be

magni ed by the rm's nancial leverage, i.e. its use of debt.

32 The subtitle in Markowitz's 1959 treatment of the subject.
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paradigm, forecasts are totally disconnected from optimization: the former are
“plugged into” the latter (hence the nampéug-in estimates and in a sense the
optimizer “does not know” that the forecasts are but point estimates that also have
an associated standard error. This led Michaud to his bon mofrteah-variance
optimizers act as statistical error maximizers.

Michaud (1989), Jobson and Korkie (1980), Best and Grauer (1991) and Chopra
and Ziemba (1993) study the impact of estimation uncertainty, where it is often
observed to be much larger than that of asset risk itself. In particular, the plug-in
estimates are found to be extremely unreliable, their performance dropping rapidly
as the number of assets increases. This led to a variety of approaches to “robus-
tify” the optimal portfolios, including shrinkage estimators, Bayesian approaches,
resampling methods and robust optimization, summarized next. It should be noted
that the practitioners little-told secret of imposing optimization constraints, such as
those reviewed in 8§2.6/p. 17, already serves to stabilize the portfolio by truncating
extreme weights, and was con rmed by Frost and Savarino (1988) to generally im-
prove performance. In this context, constraints can be interpreted as provjulisg a
hocregularization of the estimator, a point elaborated upon by Jagannathan and Ma
(2003).

A very complete review of the literature on the econometrics of portfolio choice
appears in Brandt (2004).

2.8.1 Shrinkage Estimators

It is known since Stein (1956) that biased estimators often have better nite-sample
properties (lower sample variance) than unbiased &hkesparticular, consider esti-
mating the mean of aN-dimensionall  3) multivariate normal distribution with
known covariance matri$, subject to the quadratic loss function

L(ftm) = (M mS (M m);

wheremis the true mean. In this context, the usual sample nfe&not the best
estimator (James and Stein, 1961). The James-Sheinkage estimator

ms=(1 w)ym+ wmi; 0< w< 1

exhibits a lower quadratic loss, whemg is an arbitrary “common” constant and

is called the shrinkage target. The optimal trade-off between bias and variance is
achieved by

(N 2)=T

(M mi)®s (M mi)

w = min 1;

33 This bias—variance trade-ofis related to the notion of capacity control which is studied in depth
in machine learning; see, e.g. Bishop (2006) and Hastad. (2009) for textbook treatments.
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More generally, shrinkage methods involve the combination of an unstructured esti-
mator (with a large number of degrees of freedom and likely high sample variance)
and a highly structured one (with a small number or even zero degrees of freedom).
Jobson and Ratti (1979) and Jorion (1986) have studied them in a portfolio context,
demonstrating that their bene ts carries to the estimation of expected returns and
obtain good performance of the resulting portfolios. Similarly, Frost and Savarino
(1986) and Ledoit and Wolf (2004) apply them to the estimation of covariance ma-
trices. Brandt (2004) suggests applying shrinkage estimation directly to the opti-
mal portfolio weights, where the shrinkage target can be sexna@ntereasonable
weights such as=N or those of a benchmark portfolio.

2.8.2 Bayesian Approaches

In contrast to the “plug-in” approaches presented previously which sought to obtain
the single best estimates of the next-period return mean and variance, a Bayesian or
decision-theoretic approach would explicitly carry the estimation uncertainty to the
optimization. Consider an explicit parametrization of the next-period return distribu-
tion, P(Rjq), in terms of a parameter vectqr allowing us to rewrite the expected
utility maximization, eq. (2.11), as
Z
w (q) = argmax RU(WOR) dP(Rjq):
w

A Bayesian investor would not commit to a single choice of parameter vegtor
but would instead consider the posterior distribution of parameters, given by Bayes'

rule as _
P(Djq)Po(a) .
P(D)

whereD is some data (obviously only known up to before the start of the fore-
cast period) anéy(q) is a (subjective) prior distribution on parameter values. The
investor's subjective distribution of asset returns, given the data, is obtained by
marginalizing out the parameters,
VA
P(RjD) = qP(qu)dP(qu);

P(qjD)=

yielding to reformulating the expected utility maximization problem for nding op-
timal portfolio weights as
zZ Z
W = argmax UWR)dP(Rjq) dP(qjD):
w q R

This approach to portfolio choice was pioneered as early as the 1960's by Zellner
and Chetty (1965) and further studied by Klein and Bawa (1976) and Brown (1978).
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More recently, the notion of a “learning investor” was revisited in the context of the
increasing evidence on the (mild) predictability of returns in works by Kandel and
Stambaugh (1996) and Barberis (2000); see 83.5/p. 55.

2.8.3 The Black-Litterman Model

A different path to Bayesian estimation relies on the implications of an underlying
economic equilibrium model, which can serve to provide the “prior” in a portfolio
choice context. This is embodied in the Black and Litterman (1992) model, widely
used by practitioners. Our presentation of this model draws from Falebvzdi
(2006).

Consider the expected-return relationship for aggeen by thecapm (82.7.1/p. 23),

Pi=E[R Ri]=biE[Ru Ril; (2.19)
whereb; is obtained as a regression coef cient,

CovR;;Rul RM]

S§

bi =

with s the variance of the market portfolio. We shall denoteniythe weights of
the market portfolio, such that its return can be written as

N
Ru= & ww;R;:
j=1
Then eg. (2.19) can be rewritten as

Pi= bE[Rv Rs]

C ¥
= MR Rler, Ry
S
CoMR; &N ;wu:iR;
- SRR B, Ry
Sm
E R¢] &
= R R 2 v CoMR:R
si j=1
or in matrix form,
P = d Swy with d = EIRv_Ril,
Swm

Although the true expected asset retummare unknown, we can posit that the equi-
librium model provides a sensible approximation in the form of
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P=m+ep; ep N(0;tS); (2.20)

wheret 1 is a small constari* We can viewep as a “con dence interval” in
which the true expected returns are approximated by the equilibrium model: a small
t implies a high con dence in the equilibrium estimates and vice versa.

Now suppose that the investor holds particiewson some assets or combi-
nations of assets; examples are “the expected return ofiasgklbe x percent”, or
“assetj will outperform assek by zpercent”. Each view has an attachmzh dence
re ecting how strongly the investor believes them. We can formally expresK the
views as a vecton 2 R,

q= Pm+ eg; eq  N(OW); (2.21)

whereP is aK N matrix of view combinations an@/ is aK K matrix of view
con dences. For example, in a universedf= 3 assets, the investor may believe
that

Asset 1 will have a return of:%%.
Asset 3 will outperform asset 2 by 4%.

This yields the following form for the views
2 3
. m
15% _ 100 4m,5 + €q:1 ;

for some view con dence matri¥V, which is commonly diagonal. Both eq. (2.20)
and (2.21) are expressed in terms of the unknown expected retuffise Black-
Litterman model uses thmixed estimatoof Theil and Goldberger (1961) to com-
bine the information from two data sources—here the equilibrium model and the
investor views—into a single posterior estimator. Start by “stacking” the two equa-
tions as follows,

y= Xm+ €; e N(OV)

where

_ P _ IN . _ tS
y= q X= p V=
We can rely on a standard generalized least squaies estimator (Greene, 2007)
to arrive at theBlack-Littermanestimator for expected returns,

34 values in the neighborhood of 0.1-0.3 often give satisfactory results for U.S. equities.
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g, = (XV 1) XYy
1
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(ts) L+PW p ' (tS) P+ PW g :

This estimator is then used with the standard mean-variance problem formulation,
e.g. eg. (2.2) or eq. (2.7). Practical experience with this model, documenting the
much greater stability of the resulting portfolio weights than would otherwise be ob-

tained, is related in Bevan and Winkelmann (1998), Litterman (2003), and Fabozzi
et al.(2006).

2.8.4 Portfolio Resampling

The Black-Litterman estimator still operates before portfolio optimization takes
place; its bene ts can be traced to a reduced “impedance mismatch” between the
expected return estimator and the associated covariance matrix. In contrast, portfo-
lio resampling techniques (Michaud, 1998; Scherer, 2002) attempt to make direct
use of the forecast distribution of returns by repeatedly drawing a large number
of (expected-returncovariance-matrix pairs, and for each computing an ef cient
frontier, namely a set ofpprtfolio-return, portfolio-risk) pairs, over some reason-
able risk range. Then those ef cient frontiers are averaged over all drawings, and
the resulting frontier used to make an allocation decision. Markowitz and Usmen
(2003) compare this approach to one similar to the Bayesian approach of p. 31 and
observe a good performance of the resampling approach.

A practical limitation to the approach is with respectportfolio constraints
in general, there is no guarantee that the averaged portfolio weights (after resam-
pling) will obey the inequality constraints set in the original optimization problem.
Also, due to the high number of optimization steps it requires, it is computationally
expensive.

2.8.5 Robust Portfolio Allocation

In recent years, several reformulations of the mean-variance problem have received
wide attention that attempt to incorporate estimation uncertainty within the op-
timization step—not “before”, as for the Black-Litterman model, or “around” as
for portfolio resampling. They are collectively known @bust optimizatiortech-
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niques, and are related to minimax estimators in decision tfé@&pbust methods
in mathematical programming were introduced by Ben-Tal and Nemirovski (1999)
and further studied in a portfolio choice context by Goldfarb and Iyengar (2003)
and Tutunct and Koenig (2004) among others. Fabetzl. (2007) provides a
good survey of the current literature.

The starting point of these approaches is to consideutioertainty seof the
model parameters (the next-period expected returns and their covariances for a port-
folio problem) and to ask: “what is the worst-case realization of model parameters
that can arise?”, and from there to maximize the utility of this worst-case outcome.
Consider the simplest type of uncertainty region given in the form of “box” intervals

U=f(mS):m <m<my;S.<S<Sy;S 0g;

where in this context the operator should be interpreted elementwise for both
vectors and matrices.
The robust portfolio problem with quadratic utility is expressed as

max min nfv 1 wSw
W (mS)2U

which for the above form of the uncertainty region separates out as

max min mw+ max| w’Sw
wooneum s2u s

This can be expressed as a saddle-point problem and solved in polynomial time
(Halldérsson and Tatuincl, 2003). Simpler results can be obtained by considering
other types of uncertainty sets; for instance, when only uncertainty in expected re-
turns is considered, the box constraints reduce to a quadratic program of nearly
the same complexity as the original mean-variance problem; similarly, an ellip-
soidal constraint set yields a second-order cone progsaa®, which is ef ciently
solved by interior-point methods (Boyd and Vandenberghe, 2004). More recently,
Bertsimas and Pachamanova (2008) studied a number of robust optimization ap-
proaches to the multiperiod portfolio problem (see next section) in the presence of
transaction costs; in particular, they advocate linear formulations that yield signi -
cant computational savings.

2.8.6 Portfolio Robustness: a Synthesis?

In light of the large variety of proposed methods for improving the performance
of mean-variance allocation, one may wonder if a particular method turns out to
be “best”. To the author's knowledge, a systematic comparison between all of the

35 Robust optimization should not be confused withust estimatiorin statistics, devoted to
establishing the properties of outlier-resistant estimators.
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approaches presented in this section has yet to be published. However, an element
of insight has recently been provided by DeMigeéhkl. (2009), who compare 14
different models on a number of datasets (including U.S. and world equity markets)
on three criteria: the out-of-sample Sharpe ratio, certainty equivalent return (from
the perspective of a mean-variance investor) and portfolio turnover. On these mea-
sures, it is found thatone of the “sophisticated” models consistently beat the naive
1=N benchmarkuniform portfolio weights)out of sampleThese results suggest

that, for the models considered, estimation error still largely dominates any gains
obtained from “optimal” diversi cation.



Chapter 3
Multiperiod Problems

Life can only be understood backwards; but it must be
lived forwards.
— Sgren Kierkegaard

ULTIPERIOD PROBLEMSconsider the more general case where an investor
makes asequencef decisions, each possibly impacting the following ones.

The objective is to nd, at each period, the allocation decision that take into consid-
eration a future changing opportunity set (i.e. availability of assets and their risk—
return characteristics), the remaining investment horizon, eventual transaction costs,
and other constraints such as the desire for intermediate consumption, minimization
of tax impact, or the in ux of additional capital due to labor income. These deci-
sions, in general, are not identical to those obtained under the myopic (one-period)
case, although they can be under speci ¢ assumptions (see §3.3/p. 48); more often,
we shall see that the optimal solution is constructed from the myopic one as a start-
ing point which is perturbed bylaedging demandgrm to account for “the future”.
This term makes the obtained portfolio policies differ from iterated single-period
ones.

Although Markowitz (1959) discussed the use of dynamic programming to solve
the sequential optimal portfolio choice problem (using a time-separable log-utility
of consumption as the objective function), he disregarded its more systematic appli-
cation as computationally unfeasible:

“For the actual choice of portfolio, however, the dynamic programming techniques cannot
be used. They require too much both from man and machine: 1. From the investor they

single period utility function. [...] To attempt to derive a representative utility function for
consumption over time, if feasible at all, is nothing short of a major research project. 2. Even
with the simplest of utility functions, the requirements for the dynamic programming com-
putation are far beyond economic justi cation.” (p. 278)

N. Chapads Portfolio Choice Problems: Amtroductory Survey of Single and 37
Multiperiod Models SpringerBriefs in Electrical and Computer Engineering 3,
DOI 10.1007/978-1-4614-0577-1_3, © The Author 2011
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Just as the single-period problem, the multiperiod generalization has a rich history,
albeit a more academic oReSamuelson (1969) and Merton (1969) are generally
credited with posing the general multiperiod consumption and investment problem,
Samuelson in discrete time (83.1/p. 38) and Merton in continuous time (83.2/p. 45),
although Mossin (1968) had previously studied the multiperiod portfolio choice
problem (without a consumption aspect). Earlier closely related work includes To-
bin (1965) and Phelps (1962) who considers the lifetime utility associated with a
consumption history.

After introducing these foundations, we review classical results on the structure
of optimal policies (83.3/p. 48) including a discussion of the optimality conditions
of the myopic policy. They are seen to be strongly impacted by the expected evo-
lution of theinvestment opportunity senamely the risk-reward characteristics of
available assets. We give passing mention of an elegant alternative to dynamic pro-
gramming based on the martingale formulation (83.4/p. 49) and models that ex-
plicitly incorporate consideration of investor learning behavior (83.5/p. 55). We end
this section by giving pointers to common extensions (83.6/p. 56) that have been
proposed.

3.1 The Discrete-Time Case

Consider the problem where at each time-step0;1;2;:::;T 1 the investor
makes a portfolio choice; wherein he tries to intertemporally maximize the ex-
pected utility of wealth at the nal timé&, U (W(T)), given a current wealtt 2 R,

max Et UW(T)) ; (3.1)

subject the théudget constraint
Werr = W1+ WRe 1+ (1 WiRr);  Wogiven (3:2)

This constraint describes the dynamics of wealth, specifying that the total relative
return experienced during periove 1 arises from the allocation; to risky assets

and the remainddrl.  w) from the risk-free asset; note that the latter quantity can
be negative, in which case the investor borrows at the risk-freé k&tealso require
wealth to be always nonnegativd 0. Given a sequence of decisions; g/,

it is useful to observe that the terminal wealth can be written as a function of
current wealth\,

1 To the author's knowledge, multiperiod optimization has yet to be used in the day-to-day man-
agement of an institutional portfolio. This, perhaps, can be attributed to the perceived small gains
of the approach compared to its complexity and the remaining inevitable overall portfolio risk.

2 A more complex constraint can account for differing lending and borrowing rates.
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T 1
Wr=W QO 1+ WRie1+(1 wWi)Rey : (3.3)
t=t
Consistent with a formulation by dynamic programming (Bellman, 1957; Bert-
sekas, 2005), it is convenient to express the expected terminal wealth in terms of a

value functionvarying according to the current tildesurrent wealti and other
state variableg; 2 RK;K < ¥,

h i
V(EW;z) = max B U(Wr)
fWugu tn #
h i
= maxE; max Eir1 UMW) (3.4)
" fWugu—t+1
h i
= maxEy V(t+ LW 1;2i401) (3.5)
t

subject to the budget constraint (3.2) and the recursive base case
V(T;Wr;zr) = U(Wr):

The expectations at time above, are taken with respect to the joint distribution
of asset returns and next state, conditional on the information available at,time
P(Ri+1;zi+1]F ). For our purposes, it shall be suf cient to assume a rst-order
Markov process for this, such that

P(Rt+1;zt+1]F t) = P(Re+ 12+ 1) Rt; 1)

this assumption is not overly restrictive in practice sizce&an contain (a nite
number of) lagged values of relevant variables.

In what follows, we shall use the notatidiy{ ) to denote the partial derivative of
function f with respect to thé-th argument, e.g.

Vo(t0wWe 20 £ v :
ﬂW t=t0w= W0z—zo

From eq. (3.5), the rst-order conditions for optimality at each titrexe obtained
as

0=E Vo(t+ 1V\4+1,Zt+1)ﬂ\/\4+1
h e i
ZE Vo t+ LW 1+ WRw1+(1 WhHRpy ;ze1 Rust ; (3.6)

3 Regarding notation, many treatments of nite-horizon discrete-time dynamic programming (e.g.
Bertsekas 2005) simply consider a set of value functions indexed by the current timststep,
here we speci cally include time as an explicit variable to preserve notational consistency with the
continuous-time treatment in §3.2/p. 45.



40 3 Multiperiod Problems

These optimality conditions assume that the state varableis not impacted by
the decisionw;.* The second-order conditions are satis ed if the utility function is
concave.

Mossin (1968) studied this problem under the assumption of independence of
returns across time-steps, no transaction costs and no intermediate consumption.
He derived conditions for which the myopic policy can be optimal (83.3/p. 48).
Samuelson (1969) studied the related problem in which the investor derives utility
from intermediate consumption and tries to maximize both the discounted utility of
the consumption stream and the utility of terminal (“bequeathed”) wéalth.

3.1.1 Power Utility

In general, (3.6) can only be solved numerically. However, some analytic progress
can be achieved in the case of fhawer utility,

(
Wl a
uwy= 1a’ 2L
InW;  otherwise

wherea is a coef cient of relative risk aversion. This is an example of a constant
relative risk aversiondRRA) utility function, discussed in 82.4/p. 11. In this case
(assuming, for simplicitya 6 1), substituting in eq. (3.4), we obtain

H#
i ai
maxE; max Ei+1
We fW191=t+1

V(t;W; z)

WCN)I:tl 1+ W?Rt+1+( 1 W?i)Rf;t
maxEtﬁ max Ei+1

Wi fwegl_ly 1 a
n 1 a
W 1+ WRi1+(1 wi)Rey
= maxE; 1
o {22 }
U
(W 1) "
T 1 1 a
max Ex1 O 1+ WPRps1+(1 wli)Ryy
fwegl t=t+1
9t =t+1
| {z }

y (t+ 1,z 1)

4 This would disregard, for instance, the market impact of trading for large market players. Kissell
and Glantz (2003) consider market impact at length.

5 Samuelson imposes the “greedy granny” condition, i.e. a zero-bequest requirement as a boundary
condition.
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In the next-to-last expression, the speci c form of the power utility alloWso be
factored out of the maximizations since it is not impacted by the decision variables
fwyg!_ L ;. Hence, the last expression shows that the value function factors out into
two parts: a rst one, that depends on future wealth, and equal to the utility of next-
time-step wealthl) (W. 1), and a second one that only depends on remaining time
horizon and future state variables 1, but not future wealth. This can further be
reduced by writing
(W)t 2
1 a

wherey (t;z) satis es Bellman's equation in a smaller state space,

V(t;W;z) =

y (t;z)

y(t;z) = rr\1NaxEt 1+ W?Rt+1+(l Wﬁ)Rf;t ! ay(t+ 1,zi41) ; (3.7
t

with recursive base case

y(T)=1 (3.8)

If the returns are Independent and Identically Distributen)( the above joint ex-
pectation between returns and state variables splits out as

( )
y(tz)= max E 1+ wRi1+(1 wih)Re ORIy (t+ Lze)]: (3.9)

where it is readily seen that the optimal portfolio weights at each time-step are inde-
pendent of the state variables and remaining time horizon, thence must be constant.
Put differently, forid returns (and power utility), there is no difference between the
dynamic and myopic portfolios; this property is revisited in 83.3/p. 48.

3.1.2 Numerical Example

Given a model of the conditional return distribution, the Bellman equations (3.7)—
(3.8) can be solved numerically. For a power-utility inegsbn a two-asset problem—
shifting wealth between a riskless bond and a single risky asset—and using the
generative model of eq. (2.16), conditioning excess return on dividend yield, some
instructive results appear Fig. 3.1°

The left panel shows the fraction of wealth invested in the risky asset as a func-
tion of the initial dividend yield—in effect at the time of making the forecast—and
various investor risk aversion levels, for the single-period problem (horizon=1). The

6 The simulations are carried out by estimating the expectation in (3.7) by Monte Carlo sampling
with 2500 trajectories. Maximization is performed by numerical optimization using Mathematica
6's built-in NMaximize function for constrained maximization without necessitating the avail-
ability of gradients.
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plot clearly shows that lower-aversion individuals shift their allocation very rapidly
for increasing forecasted returns (as indicated by the dividend yield) in the risky
asset: this corresponds to an increased propensitpdoket timingas risk aversion
decreases.

The right panel illustrates theorizon effectshat arise in the presence of return
forecastability (but are, as noted above, absent when returns are assoéd
shows the allocation to the risky asset as a function of investment horizon, for vari-
ousinitial (i.e. rst-period) dividend yields and a constant risk avers@or 5. No
matter how bleak the immediate prospects for risky returns are (i.e. low dividend
yield), a long-horizon investor allocates more to the risky asset than a short-horizon
one, since the returns will eventually revert to their unconditional mean over a long
period; however, in the model of eq. (3.7), this mean-reversion takes time due to the
high autocorrelation in the (log) dividend yield.

A more complete picture of the optimal policy, and associated value function, is
given inFig. 3.2.

3.1.3 The Mean-Variance Multiperiod Criterion

Surprisingly, it has been only relatively recently that a multiperiod analog to the
mean-variance problem received a thorough solution in the discrete-timé case.
Li and Ng (2000) analyzed various formulations of the maximization of terminal
quadratic utility under several hypotheses, provided explicit solutions in simplifying
cases, and derived analytical expressions for the multiperiod mean-variance ef cient
frontier (a concept that had, until that point, received no attention in the multiperiod
case).

More speci cally, considering th&l-risky-asset case as previously, the form of
the mean-variance optimization problem follows the minimum-variance formula-
tion (2.2)—(2.4) or the utility-maximization formulation (2.7)—(2.8), with the excep-
tion that the objective function is expressed in terms of termiedlthinstead of
portfolio relative return. For instance, the utility formulation takes the form

max EW] | VarWr] (3.10)

fwtgthll
subjectto W1 = WwX(1+ Res+1) (3.11)
i%=1; (3.12)

where the initial wealtg is given. The derivation of optimal solutions is compli-
cated by the fact that the objective is not time-separable (in the dynamic program-
ming sense), but analytical solutions exist if asset returns are assumed independent
between periods; they do not need to be identically distributed, provided that all
future return means and covariance matrices are known ahead of time. Obviously,

7 In continuous time, the problem was solved by Korn and Trautmann (1995) and Zhou (2000).
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Fig. 3.1 Top: Fraction of wealth invested in the risky asset for the two-asset problem as a function
of the initial dividend yield, for an investment horizon of one period (one quarter, in this case) and
various investor risk aversion levels ). Bottom: Fraction of wealth invested in the risky asset as

a function of the investment horizon, for various initial dividend yields and constant risk aversion
a=5.

the estimation methodology of §2.7/p. 23 can be put to bear for this task. Moreover,
83.5/p. 55 connect these mildly unrealistic assumptions with the fact that in a mul-
tiperiod setting, the optimal policy depends on the fact thaewmecto learn more
about the asset return distribution in the future.

Leippold et al. (2004) provided an interpretation of the solution to the multi-
period mean-variance problem in terms of an orthogonal set of basis strategies, each
with a clear economic interpretation. They use this analysis to provide analytical
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Fig. 3.2 Top: Optimal policy (fraction of capital invested in the risky asset) as a function of time-
to-maturity (years) and initial dividend yield, for an investor with a constant risk-aveesiorb.
Bottom: Value function under the same conditions.

solutions to portfolios consisting of both assets and liabilities. More recently, Cvi-
tanic et al.(2008) connect this problem to a speci ¢ case of multiperiod Sharpe ratio
maximization.


































































Fig. 4.1(right). Furthermore, complete scenarios are given a probability

We assume that the investor is governed by the piecewise linear concave utility
function shown inFig. 4.1 (left). This function can be interpreted as follows: at

8 The realization of this random variable is traditionally callestanarioin this context.



Fig. 4.1
The objective function is the value of the utility function realized for each com-
plete scenario, weighted by the probability of that scenario; since the utility is
piecewise-linear, it is split out into two terms by means of “surplus variables”
andy corresponding, respectively, to borrowing at a rate%fand investing at a
yield of g% (the surplus variables are de ned as function of terminal wealth through
constraints, below),

for the rst period is to invest the totality of initial wealth,



Fig. 4.1does not recombine).

Dantzig and Infanger (1993) discusses the solution of multiperiod portfolio prob-
lems in the stochastic programming framework, and present algorithms based on a
Benders decomposition of the linear program and Monte Carlo importance sam-
pling. A survey of stochastic programming approaches in nance is presented by
Yu et al. (2003). The book edited by Zenios (1993) provides additional useful refer-
ences.

Due to its ability to model the complex real-world dependencies, stochastic pro-
gramming has been widely applied to the problemas$et—liability management
where a portfolio does not only consist of investments (future incoming cash ows)
but also liabilities (future outgoing cash ows; for instance faced by an insurer
whose written policies represent liabilities to be paid in the future, and who has
reserves to invest optimally). Dempstaral. (2003) provide an in-depth presenta-
tion of the theory of stochastic programming to this problem, and followed up with
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