
CIRCUIT CELLAR • OCTOBER 2015 #30346
CO

LU
M

NS

Rapid FPGA Design in
Python Using MyHDL

MyHDL is an alternate hardware description language
(HDL) that allows you to leverage the power of Python
for designing, simulating, and verifying FPGA designs.
Colin explains how MyHDL works and describes a FIR
filter he created with C/C++ HLS in his February 2014
article to compare the toolchain flow.

By Colin O’Flynn (Canada)

PROGRAMMABLE LOGIC IN PRACTICE

Back in February 2014, I took you through
the use of C/C++ High Level Synthesis

(HLS) as a design language for a FPGA. This
article is designed to introduce you to another
option for a design language, this time using
Python. Once again I’ll demonstrate that
directly writing Verilog or VHDL is not always
the most efficient option.

I’m going to follow the Finite Impulse
Response (FIR) filter example from my
February 2014 column, which allows you to
directly compare the design process. One
of the major advantages of using MyHDL
compared to C/C++ HLS is that you can
pull upon a huge library of existing Python
modules to help generate and validate your
design.

In the C/C++ HLS example, I used external
tools to generate the FIR coefficients. In
the MyHDL example, they are generated
automatically from my filter specifications.
This makes it easily to validate the fixed-
point implementation, and compare the filter
results to the “ideal” filter result. I’ll get into
more details later, but before that I want to
present an overview of MyHDL.

I should also mention this column owes
a great debt to Christopher Felton, who’s
presentation at DesignWest 2013 on MyHDL
is what originally turned me on to the use
of MyHDL. I’ve based the FIR filter example
in this column on some of his examples.
(For more of his examples, refer to www.
fpgarelated.com/blogs-1/nf/Christopher_
Felton.php.) I’ve also linked to his work
from ProgrammableLogicInPractice.com,
which includes a few other sites besides
FPGARelated.com.

INTRODUCING MyHDL
Even if you haven’t heard about MyHDL

before, it’s been in development for some
time. It was created by Jan Decaluwe, and
released to the world in September 2003.
MyHDL allows you to use Python as a hardware
description language (HDL). Like other high-
level synthesis tools, you must remember it
is not designed to convert arbitrary software
code into FPGA modules. It won’t make an
FPGA designer out of a Python programmer,
but might make a FPGA designer want to pick
up Python for improved productivity.

http://www.fpgarelated.com/blogs-1/nf/Christopher_
http://www.fpgarelated.com/blogs-1/nf/Christopher_

circuitcellar.com 47
CO

LU
M

NS

If you are familiar with Python, you will
know that it doesn’t natively support all the
features required in a HDL. But with a handful
of extensions, we can emulate the required
features such as ports, signals, and concurrent
blocks. For synthesis MyHDL operates at the
same Register Transfer Level (RTL) as Verilog
or VHDL. This makes it easy to automatically
convert from MyHDL to Verilog or VHDL. The
resulting Verilog or VHDL files can either be
synthesized directly by your FPGA toolchain, or
integrated into your existing project (which will
again by synthesized by your FPGA toolchain).

Let’s jump right into a simple example.
Listing 1 shows a simple implementation
of a counter with programmable maximum.
Listing 2 shows the resulting Verilog code.
The ctrl_hdl() block is the main module.
One of the first things to note is the module
follows some Python-centric themes. For
example, there is no explicit type (such as
integer bit-width) in the module definition.
Instead, the module is able to pull attributes
such as the input/output port widths directly
from the objects themselves.

The combinational logic (@always_comb)
and sequential logic (@always_seq) blocks
will be familiar to any FPGA designer. Like
with Verilog or VHDL, a process sensitivity
list can be used to determine when the blocks
run. You will start to notice the simple use
of class attributes, such as the rising edge
being defined as part of the Signal() class
from MyHDL. As well when dealing with the
assignment of the future value of the signal
once this block executes, we use the .next
attribute instead of requiring a special
operator (such as <= in Verilog).

This simple example also takes advantage
of the use of the ResetSignal() object type.
This special signal makes working with resets
easier. Notice I never define the reset behavior
in my MyHDL @always_seq block. Instead
the reset signal will automatically reset any
used signals to their “default” state (which
was declared when I defined those signals).
This helps make the code clearer. Often we
don’t need to see all the reset logic, but still
want signals to start at a known value.

Of course, MyHDL doesn’t force its reset
handling down your throat. Another form of
the sequential block allows you to explicitly
define the reset behavior. This allows you
to reset signals to other values or perform
additional actions within the reset block.

So far, I’ve concentrated mostly on the
synthesizable aspects of MyHDL. But much of
the “more interesting” aspects of MyHDL are
the ability to use it for both simulation and
verification of your hardware cores. Whereas
Verilog or VHDL have somewhat limited I/O
facilities and external libraries, Python has

almost limitless potential when it comes to
I/O facilities and external libraries.

In fact, MyHDL can even be used in
combination with a Verilog simulator. This
means you are not simulating the MyHDL
code, but actually simulating the Verilog
code generated by MyHDL. The advantage is
that by using MyHDL (and Python), you are
able to perform complex verification tasks
with ease, while still validating your Verilog
implementation.

MyHDL also makes problems such as
conditional instantiation (selecting which
version of a core to use) trivial. MyHDL passes
instances of the HDL object, and doesn’t

LISTING 1
A simple counter implemented in MyHDL. This code is sufficient to describe the counter and convert it to
Verilog, the resulting Verilog being shown in Listing 2.

from myhdl import *

def cntr_hdl(clk,reset,prog_max,cnt):
 #Define local signal with sizes based on port
 intcnt = Signal(intbv(0,min=cnt.min, max=cnt.max))

 #Example combinational block
 @always_comb
 def copy_out():
 cnt.next = intcnt

 #Example sequential block - reset code generated
 #automatically
 @always_seq(clk.posedge, reset=reset)
 def cnt_main():
 if cnt < prog_max:
 intcnt.next = (intcnt + 1)
 else:
 intcnt.next = 0

 return instances()

##Example of instantiating module, here used just
##for Verilog conversion

#Simple boolean signal
clk = Signal(False)

#Reset signal gets special treatment, makes it easier
#to change reset parameters around
reset = ResetSignal(0, active=1, async=True)

#bit-vector types, specify default value along with min/max
prog_max = Signal(intbv(0,min=0, max=4000))
cnt = Signal(intbv(0,min=0, max=4000))

toVerilog(cntr_hdl, clk, reset, prog_max, cnt)

CIRCUIT CELLAR • OCTOBER 2015 #30348
CO

LU
M

NS

require you to define the entire port map as
Verilog or VHDL would need.

While I don’t have time to cover all these
aspects, I want to talk you through at least
a simple example of MyHDL simulation and
implementation. To do this I’ll be replicating
the FIR filter from the February 2014 column.

ANOTHER FIRRY EXAMPLE
The FIR filter is not particular exciting,

but it does show off the use of MyHDL and
Python to simplify your entire development.
If you want to follow along, the easiest
method is using a Python distribution such as
WinPython on Windows. You can then install
MyHDL using the pip tools, as described in
the MyHDL documentation. This is all that is
required to run the examples, which will be
posted on ProgrammableLogicInPractice.com
if you don’t want to type everything in from
the listing.

The MyHDL code for the FIR filter is shown
in Listing 3, and the Verilog code generated
by this is shown in Listing 4. Note the code in
Listing 3 doesn’t show the external interface
or coefficient generation. I’ll talk about that
in a moment.

Comparing Listing 3 and Listing 4, you
can note the similarity between the two code
bases. One difference between the HLS C/C++
example from my previous column is that loop
unrolling is not handled by MyHDL. Instead
as MyHDL is operating at a similar level to
Verilog or VHDL it relies on the synthesizer to
perform the loop unrolling. Future version of
MyHDL may support loop unrolling, but one
could argue that perhaps this is not the job of
the HDL, but instead the job of the hardware
designer using the HDL.

Regardless of philosophical arguments,
this does mean you are unable to automatically
perform tasks such as tuning the trade-off
between usage of hardware resources and
throughput by asking the tools to unroll or
not unroll a specific loop. The C/C++ HLS
examples from my previous columns could
be optimized for area or speed by a simple
#pragma due to the support of C/C++ HLS to
tune loop unrolling.

One thing I haven’t explicitly mentioned
until now is that MyHDL is entirely open-
source (and free), whereas the C/C++ HLS has
a $2,000 yearly license fee and is proprietary.
Thus, while I will compare the two for regular
usage, it’s worthwhile to also consider both
the up-front cost, and the ability to modify
the tools for your own use. MyHDL easily wins
on both of those fronts!

But the real triumph of MyHDL can be seen
once I introduce the complete simulation
and generation environment. This is shown
in Listing 5. The HDL code from Listing 3 is

ABOUT THE AUTHOR
Colin O’Flynn (cof lynn@newae.com) has
been bui ld ing and breaking e lectronic
d ev i c e s f o r many yea r s . He i s cu r-
rent ly complet ing a PhD at Da lhous ie
University in Halifax, NS, Canada. His most re-
cent work focuses on embedded security, but
he still enjoys everything from FPGA develop-
ment to hand-soldering prototype circuits.
Some of his work is posted on his website at
www.colinoflynn.com.

LISTING 2
The Verilog output of MyHDL for the input given in Listing 1. The direct conversion can easily be seen in
this case, although MyHDL has handled some features for us such as resetting signals to default values that
Verilog requires us to explicitly specify.

module cntr_hdl (
 clk,
 reset,
 prog_max,
 cnt
);

input clk;
input reset;
input [11:0] prog_max;
output [11:0] cnt;
wire [11:0] cnt;

reg [11:0] intcnt;

always @(posedge clk, posedge reset) begin:
CNTR_HDL_CNT_MAIN
 if (reset == 1) begin
 intcnt <= 0;
 end
 else begin
 if ((cnt < prog_max)) begin
 intcnt <= (intcnt + 1);
 end
 else begin
 intcnt <= 0;
 end
 end
end

assign cnt = intcnt;

endmodule

mailto:coflynn@newae.com
http://www.colinoflynn.com

circuitcellar.com 49
CO

LU
M

NS

not repeated, but you can consider the two
listings are combined in the final program. In
the C/C++ FIR example I required the use of
external tools for filter design—with MyHDL,
it’s built right into the tools.

MyHDL is really just calling standard
Python libraries, which have extensive tools
for filter design. Thus, I could easily generate
FIR or IIR filters of almost any order and
type. The filter implementation itself is

fixed-point, and the Python code converts
the floating-point types to the integer (fixed-
point) notation in use. Full fixed-point support
is still not present in the latest MyHDL release
as of this column (0.8), but is on the roadmap
for a future version.

Even without fixed-point support, the
simulation environment of MyHDL pulls it
ahead of C/C++ HLS. This makes it easy to
verify correct operation of complex modules

LISTING 3
The core of the FIR module in MyHDL is
given here. Note this snippet requires
instantiation to declare signal widths
and the filter constants.

Based on IIR Filter code, which is Copyright Christopher Felton
and released under the LGPL license.

from myhdl import *

def sfir_hdl(
 # ~~ Ports ~~
 clk, # Synchronous clock
 x, # Input word, fixed-point format described by "W"
 y, # Output word, fixed-point format described by "W"

 # ~~ Parameters ~~
 B=None, # Numerator coefficients, in fixed-point specified
 W=(24,0) # Fixed-point description, tuple,
 # W[0] = word length (wl)
 # W[1] = integer word length (iwl)
 # fraction word length (fwl) = wl-iwl-1
):
 # Make sure all coefficients are int, the class wrapper handles all float to
 # fixed-point conversion.
 rB = [isinstance(B[ii], isnt) for ii in range(len(B))]
 assert False not in rB, "All B coefficients must be type int (fixed-point)"

 # We use a double-precision parameters as the result of the multiplication
 # will be 2x the input bit width. Define double width (precision) max and min
 _max = 2**(2*W[0])
 _min = -1*_max

 Q = W[0]-1
 Qd = 2*W[0]

 # Delay elements, list of signals (double precision for all)
 ffd = [Signal(intbv(0, min=_min, max=_max)) for ii in range(len(B))]

 @always(clk.posedge)
 def rtl_fir():
 ffd[0].next = x
 for i in range(1, len(B)):
 ffd[i].next = ffd[i-1]

 yacc = 0
 for i in range(0, len(B)):
 b = B[i]
 yacc += b * ffd[i]

 # Double precision accumulator
 y.next = yacc >> Q

 return instances()

CIRCUIT CELLAR • OCTOBER 2015 #30350
CO

LU
M

NS

compared to C/C++ HLS, mostly as MyHDL
is able to use the huge selection of Python
modules to do everything from FFTs to
graphing to I/O handling.

The simulation itself is performed in the
TestFreqResponse() function. You will
notice again the MyHDL-specific extensions

used here (such as the @always block to
generate a clock signal). But we can use
Python libraries as part of our test bench—
appending data to lists or performing FFTs of
data before saving.

In this example the function
PlotResponse() generates the “expected”

LISTING 4
The resulting FIR filter in Verilog,
based on Listing 3. Again, note the
fairly straightforward conversion from
MyHDL to Verilog.

`timescale 1ns/10ps

module sfir_hdl (
 clk,
 x,
 y
);

input clk;
input signed [9:0] x;
output signed [9:0] y;
reg signed [9:0] y;

reg signed [20:0] ffd [0:19-1];

always @(posedge clk) begin: SFIR_HDL_RTL_FIR
 integer i;
 integer yacc;
 integer b;
 ffd[0] <= x;
 for (i=1; i<19; i=i+1) begin
 ffd[i] <= ffd[(i - 1)];
 end
 yacc = 0;
 for (i=0; i<19; i=i+1) begin
 case (i)
 0: b = 1;
 1: b = 2;
 2: b = 1;
 3: b = (-5);
 4: b = (-15);
 5: b = (-15);
 6: b = 13;
 7: b = 69;
 8: b = 128;
 9: b = 153;
 10: b = 128;
 11: b = 69;
 12: b = 13;
 13: b = (-15);
 14: b = (-15);
 15: b = (-5);
 16: b = 1;
 17: b = 2;
 default: b = 1;
 endcase
 yacc = yacc + (b * ffd[i]);
 end
 y <= $signed(yacc >>> 9);
end

endmodule

circuitcellar.com 51
CO

LU
M

NS

frequency response of the filter based entirely
on tried-and-true Python libraries, and
compares it to our fixed-point results. The
results of this are shown in Figure 1. Notice
that the frequency response generally follows
the expected response. This is using 10-bit
inputs (the same as the ADC/DAC on my test
board) and 20-bit intermediate values.

I could easily change the HDL to use
5-bit integers for the input values, which
causes some additional divergence of my
filter frequency response to the ideal filter.
This frequency response of this fixed-point
implementation is shown in Figure 2.

As a final test I’ve implemented the FIR
filter in a Spartan 3 device, with an ADC and
DAC running at 66.67 MHz. The FIR filter has
been inserted between the ADC and DAC, and
the frequency response is plotted in Figure
3. The analog path isn’t perfect here which
accounts for some of the errors, but you
can see the response falls within “expected”
bands compared to Figure 1.

MyHDL made it trivial to entirely describe
a filter which can be synthesized onto a FPGA.
Unlike the C/C++ HLS example, I was able to
use Python tools to include the entire filter
design specifications into the source file.

EVEN MORE THROWN IN
While this brief introduction to MyHDL

won’t do it full justice, there are a few more
things worth mentioning. One thing I can’t
miss is highlighting the ability to perform
unit testing in MyHDL. When designing
hardware modules it can be a hassle to
ensure you have tests for every module, and
let alone attempting to script those tests to
continuously run.

FIGURE 1
This shows the comparison of the expected FIR filter (in red) to the 10-bit fixed point
implementation in blue. The fixed-point frequency response is obtained through a
simulation in MyHDL.

FIGURE 2
Compared to Figure 1, this shows what happens if we use only a 5-bit signal instead
of a 10-bit signal. The loss of correct filter response can be seen by comparing the
fixed-point response (in blue) to the expected response (in red).

FIGURE 3
The implemented FIR filter using 10-bit integer inputs is tested on a FPGA, where the input and output of
the filter is an ADC and DAC respectively sampling at 66.67 MHz. This figure has numerous sources of error
due to the introduction of an analog signal path, but it can be seen to generally match the expected FIR filter
response.

FIGURE 4
MyHDL also makes it easy to trace signal changes with time, by writing all signal changes to a VCD file. Here
I’m inspecting the input and output of the filter for the frequency-bandwidth test used in generating Figures
1 and 2.

CIRCUIT CELLAR • OCTOBER 2015 #30352
CO

LU
M

NS

Based on IIR Filter code, which is Copyright Christopher Felton
and released under the LGPL license.

from myhdl import *
import numpy as np
from numpy import pi, log10
from numpy.fft import fft
from numpy.random import uniform
from scipy.signal import firwin, freqz
import pylab

class SFIR():
 def __init__(self,
 Fc=10E6, # cutoff frequency
 Fs=66.66E6, # sample rate
 W=(24,0) # Fixed-point to use
):
 # The W format, intended to be (total bits, integer bits,
 # fractional bits) is not fully support.
 # Determine the max and min for the word-widths specified
 self.W = W
 self.max = int(2**(W[0]-1))
 self.min = int(-1*self.max)

 # Filter Design
 N = 19
 Wn = 0

 # Define the cutoff as a fraction of the nyquist
 Wn = float(Fc)/(Fs/2.0)
 self.b = firwin(N, Wn)

 # fixed-point Coefficients for the FIR filter
 self.fxb = np.round(self.b * self.max)/self.max

 # Create the integer (fixed-point) version
 self.fxb = tuple(map(int, self.fxb*self.max))

 print "FIR w,b", Wn, self.b
 print "FIR fixed-point b", self.fxb

 def Convert(self, W=None):
 clk = Signal(False)
 x = Signal(intbv(0,min=-2**(self.W[0]-1), max=2**(self.W[0]-1)))
 y = Signal(intbv(0,min=-2**(self.W[0]-1), max=2**(self.W[0]-1)))

 toVerilog(sfir_hdl, clk, x, y, B=self.fxb, W=self.W)

 def TestFreqResponse(self, Nloops=3, Nfft=1024):
 self.Nfft = Nfft
 Q = self.W[0]-1
 clk = Signal(False)
 x = Signal(intbv(0,min=-2**Q,max=2**Q))
 y = Signal(intbv(0,min=-2**Q,max=2**Q))
 xf = Signal(0.0)

 dut = traceSignals(self.RTL, clk, x, y)

 @always(delay(10))
 def clkgen():

CIRCUIT CELLAR • OCTOBER 2015 #30354
CO

LU
M

NS

 clk.next = not clk

 @always(clk.posedge)
 def ist():
 xi = uniform(-1,1)
 x.next = int(self.max*xi)
 xf.next = xi

 @instance
 def stimulus():
 ysave = np.zeros(Nfft)
 xsave = np.zeros(Nfft)

 self.yfavg = np.zeros(Nfft)
 self.xfavg = np.zeros(Nfft)

 for ii in range(Nloops):
 for jj in range(Nfft):
 yield clk.posedge
 xsave[jj] = float(xf)
 ysave[jj] = float(y)/self.max

 self.yfavg = self.yfavg + (abs(fft(ysave, Nfft)) / Nfft)
 self.xfavg = self.xfavg + (abs(fft(xsave, Nfft)) / Nfft)

 raise StopSimulation

 return instances()

 def RTL(self, clk, x, y):
 hdl = sfir_hdl(clk, x, y, B=self.fxb, W=self.W)
 return hdl

 def PlotResponse(self):
 # Plot the designed filter response
 pylab.ioff()

 Fs = 66.66E6

 # plot the simulated response
 # -- Fixed Point Sim --
 xa = (2*pi * np.arange(self.Nfft)/self.Nfft) / (2*pi) * Fs
 H = self.yfavg / self.xfavg
 pylab.plot(xa, 20*log10(H), 'b')

 w, h = freqz(self.b)
 # pylab.hold(True)
 pylab.plot((w/(2*pi))*Fs, 20 * np.log10(abs(h)), 'r')

 pylab.ylabel('Magnitude dB');
 pylab.xlabel('Frequency (MHz)')
 pylab.axis([0, Fs/2, -60, 5])
 pylab.xticks([0,10E6,20E6,30E6], ['0', '10', '20', '30'])
 pylab.title('Comparison of HDL Implementation to Expected Response')

circuitcellar.com 55
CO

LU
M

NS

Once again MyHDL pulls on existing work in Python to simplify our test cases.
It uses the unittest module from Python to allow you to easily generate test
cases. Such test cases can validate a range of inputs—including testing options
such as various bit widths to your module. These tests can be strung together
with regular Python code, a task it excels at.

When it comes to debugging or documenting the code, MyHDL can automatically
trace into a module and save signal waveforms to a .vcd file. Such a file can be
opened by a universal viewer, such as gtkwave, which I show plotting the input
and output of my FIR filter in Figure 4. The trace statement itself can be seen in
Listing 5, as the call to traceSignals(). This was all done without any additional
Verilog simulator, but as part of the regular MyHDL development process.

MYHDL SUPERHERO
MyHDL presents a number of credible reasons it can be taken seriously as

a hardware description language (HDL). Most critically, it doesn’t try to be “too
clever”, but instead inserts itself at about the same level as your existing Verilog
or VHDL code. But by using the power of Python, MyHDL greatly simplifies aspects
such as simulation and unit testing of your design, while improving many aspects
that affect your synthesizable module such as clarifying reset signal handling and
improving parametrized port definitions.

If you want to learn more about MyHDL, I’ll have some examples
(such as the FIR filter in this column) and links to other resources at the
ProgrammableLogicInPractice.com website. But there is extensive documentation
online at the MyHDL project webpage (MyHDL.org), which also includes a few
examples. Christopher Felton has a number of additional well-documented
examples such as FFTs, IIR filters, and more. You’ll find further examples on
various webpages such as everything from simple counters to Kalman filters
implemented in MyHDL.

Considering MyHDL is free and easily available, there’s nothing to stop you
from giving it a spin. I think you’ll find it has the right combination of familiar
constructs that get you up to speed quickly with the new language, but adds
enough new functionality to improve your overall productivity and enjoyment of
FPGA development. Have fun!

 pylab.savefig("firtest.png")

if __name__ == '__main__':
 # Instantiate the filter and define the Signal
 W = (10,0)
 flt = SFIR(W=W)

 flt.Convert()

 tb = flt.TestFreqResponse(Nloops=3, Nfft=1024)
 sim = Simulation(tb)
 print "Run Simulation"
 sim.run()
 print "Plot Response"
 flt.PlotResponse()

LISTING 5
The real power of MyHDL occurs once we start building systems around our cores. Here I’m using the SciPy
library to automatically generate FIR filter coefficients, given the sampling frequency and desired cut-off. I can
also compare the output of the fixed-point filter implementation to an idea FIR filter for the selected fixed-point
bit width.

©2015 Measurement Computing Corporation
info@mccdaq.com

Contact us
1.800.234.4232

mccdaq.com/USB-230-Series

MCC Continues
to Lower the
Cost of DAQ

M E A S U R E M E N T C O M P U T I N G

USB-230 Series
From $249

• Easy to Use
• Easy to Integrate
• Easy to Support

• 8 SE/4 DIFF analog
inputs

• 16-bit resolution

• Up to 100 kS/s
sample rate

• 8 digital I/O

• One 32-bit counter

• Two analog outputs

• Included software
and drivers

OEM board-only
versions are

also available

mailto:info@mccdaq.com
www.mccdaq.com/USB-230-Series
mailto:info@mccdaq.com

