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Although filter synthesis techniques
are widespread, the broad-band
matching network synthesis prob-

lem is more challenging due to the fre-
quency dependence of the load data. This
paper describes the implementation
details of the “Real Frequency” broad-
band matching iterative network synthe-
sis technique. It is designed to synthesize
minimum impedance low pass LC ladder
networks to match a user-defined gain
response to tabulated load impedance
data. This synthesis algorithm is shown
to determine the optimum matching net-
work for a given topology. Examples are provid-
ed that illustrate the advantages and limita-
tions of the algorithm; also, a brief comparison
is presented between different synthesis tech-
niques. 

The purpose of this paper is to describe the
implementation details of the Carlin “Real
Frequency” broad-band matching network syn-
thesis technique. This algorithm synthesizes an
LC ladder network to match a complex load
impedance to a user-specified gain, as a function
of specified frequencies, to an arbitrary source
resistance.

Matching complex load impedances is an
integral part of RF amplifier design and many
other applications. The practice of arbitrarily
selecting a matching network topology and
using an optimization program to select compo-
nent values may not always yield the best
results over wide frequency bands. Many
researchers in the field of network theory recog-
nize that this is a common, but flawed practice.
Sophisticated synthesis algorithms have been
developed that utilize a combination of princi-
ples from network theory and optimization at
various points in the synthesis process. Many of

these new techniques are designed to generate a
matching network that matches a table of com-
plex load impedances over frequency to either
an arbitrary resistive source, or a source that is
also represented as a table of complex frequency
points.

Introduced by Carlin in 1977, the “Real-
Frequency” Technique (RFT) is a popular
impedance matching iterative technique for
synthesizing broad-band impedance matching
networks. Carlin’s research papers show that
the algorithm yields results superior to the clas-
sical approach by Fano using analytic gain-
bandwidth theory, as well as Chen’s explicit for-
mulas for computing optimum matching net-
works [2], [3]. Although there are several other
excellent techniques for broad-band matching
synthesis (parametric broad-band matching
algorithms utilizing Bruene functions [8], man-
ually intensive Smith chart graphical methods,
and Cuthbert’s grid based approach to imped-
ance matching [5]), the RFT algorithm remains
an effective and elegant means of synthesizing
broad-band matching networks. 

“The revolutionary aspect of the RFT is not
the particular optimization program used, but

26 Applied Microwave & Wireless

Zs

Z22Z11 ZL(w)
Lossless LC
Matching Network

■ Figure 1. This figure shows a generalized impedance
matching problem for a complex load and a complex
source impedance.
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the recognition that the classic analytic theory of broad-
band matching (Fano-Youla), accepted for so long as the
final answer to broadband matching problems, will
always give results inferior to the RFT considered as a
numerical optimization technique for minimizing a dis-
tance in N-space.” — Herbert Carlin.

The method
This section contains a qualitative overview of the

Carlin RFT algorithm, followed by a detailed description
of each step.

The RFT synthesis method requires the user to spec-
ify the load impedance to be matched at a number of dis-
crete frequencies, along with the gain desired at each
frequency. The algorithm consists of two main compo-
nents: determining the output impedance, Z22(wi), of the
matching network that will achieve the desired gain at
each discrete frequency, and forming a transfer function,
Z22(s), to represent these discrete output impedance val-
ues. Having determined the required transfer function,
a ladder network can be synthesized. For the first step,
a piece-wise linear function is used to represent the
resistance (real part), R22(wi), of the matching network
output impedance. With the resistance known, the cor-
responding reactance, and hence impedance, of the
matching network can be computed by a Hilbert trans-
formation. By using an optimizer to vary the piece-wise
linear representation of this resistance function, the
required output impedance of the matching network at
each frequency, Z22(wi), (corresponding to the user-
defined discrete load impedance frequencies) that
achieves the specified gain can be obtained. For the sec-
ond step, a rational function, R22(w), is determined
which approximates R22(wi). This function can be con-
verted to a positive real RLC function Z22(s) using the
Gewertz procedure, and subsequently converted to an
LC function and realized in the form of an LC ladder
network.

A. Determining discrete impedances required to
achieve desired gain
The power gain at the interface between the load

impedance and the impedance matching network is
given by the following expression:

(1)

The output resistance of the impedance matching
network is approximated by a piece-wise linear function:

(2)

where rk are the “extrusion” factors at each increment
frequency of the piece-wise linear function, and ak is:

(3)

The extrusion factor at the last increment frequency
is not independent on the other factors — the resistance
function is constrained to be zero at the final increment
frequency, and hence the final extrusion point must be
the negative of the sum of all other extrusion factors, rN
= –(r1 + r2 + ... + rN–1). The reactance X22(w) can be
determined from R22(w) using the Hilbert transform,
and is represented in piece-wise linear fashion by the fol-
lowing expression [4]:

(4)

where:

(5)

The impedance Z22(wi) is formed by the sum of the
piece-wise linear resistance and impedance functions.
The piece-wise linear function includes the source resis-
tance, RS, and the problem is inherently low pass since
we constrain the resistance to be zero at the final incre-
ment frequency.

The optimization routine varies the extrusion point
values of the piece-wise linear resistance function, and
the gain at each frequency is computed. The goal of the
optimizer program is to find the extrusion point values
that yield the minimum of the sum of the squares of the
differences between the desired gain and these values at
each discrete load frequency:

(6)

The output of this process is a set of impedance val-
ues, Z22(wi), that define the matching network output
impedance required to achieve the desired gain. The
next step is to determine the transfer function that
approximates these values.

B. Determine resistance function for desired matching
network
The reactance of a minimum impedance function can

be uniquely determined when the resistance is known.
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Hence, the first task in formulating an impedance func-
tion to approximate a set of discrete impedance points is
to determine the resistance function that approximates
the resistive (real) part of the desired matching network
output impedance, Z22(wi). This resistance function is
assumed to be of the form:

(7)

where this function interpolates the resistive (real) part
of the desired matching network output impedance,
R22(wi) = real (Z22(wi)), as well as the source impedance,
RS. The source resistance must be included because the
impedance looking into the output of the matching net-
work also includes RS at DC. Also, for the technique to
find a realizable ladder network, the impedance function
approximating Z22(wi) must have no real zeros in the w-
plane. This property results from the requirement that
a passive network must be stable.

The steps in forming the resistance function are as
follows:

• In order to facilitate using a least squares polyno-
mial curve fitting algorithm, R(w) is changed to have the
following form (where x = w2):

(8)

• The data points, R(wi), are transformed to T(wi) =
1/R(wi) and a polynomial of order P is fit to T(wi) using
a least squares curve fitting algorithm to find bm,bm–1, ...
b0. The order of the approximation polynomial, P, speci-
fies the number of components in the matching net-
work. 

• The roots of T(w) are computed to ensure that the
stability requirement is satisfied — the function T(w)
must not have any roots on the imaginary axis. A root on
the imaginary axis maps to a real zero in the matching
network impedance function, resulting in an unrealiz-
able network.

• In many cases, T(w) will have roots on the imagi-
nary axis. A root on the imaginary axis implies that the
function is “too slow” at high frequencies. The problem
is solved by adding an additional frequency point,
Z22(wN+1), outside the domain of the frequency points
considered in the original load impedance data set.
Recall that it is only necessary for R(w) to approximate
the resistive (real) part of the desired matching net-
work output impedance at the frequencies specified
(and at DC where the source impedance is defined). As
a result, any arbitrary impedance at any frequency
greater than the last load impedance frequency can be
added to the data set without changing the synthesis
goals. This extra data point is only used to ensure T(w)
has no roots on the imaginary axis — it is discarded

after the best polynomial fit is found. 

C. Construct impedance function uniquely defined by
the resistance function
The resistance function resulting from the interpola-

tion procedure is the resistive part of the minimum
impedance function that interpolates the desired output
impedance of the matching network [2]. The next step is
to find the corresponding minimum impedance function.
This minimum impedance function must be positive real
to ensure that the function is realizable, and is in the fol-
lowing form:

(9)

The technique employed to perform this operation is
the Gewertz Procedure:

• Compute the roots of the denominator of the resis-
tance function, represented by the complex numbers s1,
s2, ... sN. The denominator of the impedance function is
formed by the product of these right-half-plane root fac-
tors, (s–s1)(s–s2) ... (s–sN).

• The numerator of the impedance function can be
found by solving the following linear system [4]:

(10)

which has a matrix form:

where Ar is formed from the numerator of Equation 7.
This linear system is solved using the Gauss-Jordon
method.

D. Synthesis of source terminated LC ladder networks
The circuit synthesis in this implementation of the

Carlin method is restricted to an LC ladder network that
has a shunt capacitor as the element adjacent to the load
impedance. This results from the assumption (in the
original problem formulation) that a low pass minimum
impedance network will be designed [3].

• Separate the denominator of the impedance trans-
fer function, Z22(s) = P(s)/Q(s), into a function of the
even powers, Qe(s), and a function of odd powers, Qo(s).

• For a source-terminated minimum-impedance lad-
der network, the reactance function, ZLC(s), is formed as
Qe(s)/Qo(s) if the numerator of the impedance transfer
function, P(s), is an even function of s, or ZLC(s) is
formed as Qo(s)/Qe(s) if P(s) is an odd function [4].
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• Synthesize the LC ladder network by performing a
continued fraction expansion on ZLC(s) (Cauer I synthe-
sis). The continued fraction expansion will have the fol-
lowing form:

(11)

• The ladder network is connected such that the ini-
tial shunt capacitor is across the source resistance.

• Perform impedance and frequency scaling to con-
vert the continued fraction coefficient to component val-
ues. If the highest power of P(s) is a polynomial of even
power, then the first component after the source resis-
tance is a shunt capacitor. Otherwise, the first compo-
nent is a series inductor.

E. Optimization of matching network component values
The successful execution of the synthesis program

will result in a matching network that exactly achieves
the desired gain response. In addition, it is possible to
use the synthesized component values and topology as
the starting point for a gradient optimization to refine
further the matching network. A gradient optimization
only is required, because it is presumed that the result
of the network synthesis is already near to the best solu-
tion for the given topology.

Results
Two examples of broad-band impedance matching

problems are presented.  The first problem is an exam-
ple from published papers and books [1], [3] to validate
the program algorithm and code.  The second problem is
an example of a “real life” design — the input imped-
ance of a receiver front-end pre-amplifier.

A. Fano's broadband matching example
This impedance matching problem duplicates the

matching problem originally posed by Fano [3]. The
impedance and frequency scaled problem is to match the
RLC load — L=2.3 H, C=1.2 F, R=1.0 ohm — to a
source impedance RS=2.2 ohm to achieve a linear gain
of 0.85 over the frequency range 0.012 to 0.159 Hz (see
Table 1). The matching network component values for
the synthesized match are C1=0.3599 F, L2=2.939 H,
and C3=0.9279 F (see Figure 6). Figures 3 through 5
show the some of the plots from the MatlabTM program
used to implement the algorithm, Figures 6 and 7 show
MDS plots of the matching network and load. 

Figure 3 shows the desired gain, the gain resulting
from the optimization process to find Z22(wi) (the piece-
wise linear approximation of the required output imped-
ance of the matching network), and the gain of the cir-
cuit with the synthesized matching network. For almost
all matching problems, the optimizer response should
closely match the desired response.

Given the desired number of components, the polyno-
mial, T(w), yielding the best fit that satisfies the stabili-
ty criterion, is used to determine the component values.
This is shown in Figure 4. The success of the algorithm
depends on whether the polynomial of given order can
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■ Figure 2. The general form of the synthesized circuit. This
figure shows the generalized impedance matching net-
work synthesized with the RFT algorithm. For a minimum
impedance solution, the component nearest the load must
always be a shunt capacitor,  CN.

■ Figure 3. Desired gain response, optimizer response and
achieved gain response.

F [Hz] RL [ww] XL [ww] Gdesired Gachieved

0.012 0.992 0.081 0.85 0.85
0.036 0.931 0.269 0.85 0.85
0.061 0.826 0.500 0.85 0.85
0.085 0.707 0.779 0.85 0.85
0.110 0.593 1.098 0.85 0.84
0.135 0.493 1.145 0.85 0.86
0.159 0.410 1.808 0.85 0.87

■ Table 1. Fano’s normalized and scaled load impedance
problem.
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fit R22(wi) as required by the given gain response.
Figure 5 shows the required output impedance of the

matching network, Z22(wi) (as determined by the piece-
wise linear optimization) compared to the synthesized
output impedance function, Z(s). 

The final load and circuit and input impedance of this
final network were simulated in HP EEsof’s MDS. The
circuit and Smith chart are shown in Figures 6 and 7
respectively. In this example, the synthesized network
achieves the specified power gain over the load imped-
ance frequency range.

B. Preamplifier design example
This impedance matching problem uses the measured

input impedance from a single stage RF preamplifier

from a receiver front-end. In this example, a comparison
is made between the RFT algorithm, Cuthbert’s grid-
based impedance matching approach, GRABIM. This
technique employs an exhaustive grid search of element
values in multidimensional logarithmic space to find a
promising matching topology and near optimal element
values. A constrained network optimizer is then used to
refine the solution.  That algorithm is presented here as
an alternative synthesis technique that claims to be
superior to real frequency polynomial strategies [5] and
the MDS random-gradient optimizer. In addition, the
component values computed by the RFT method were
used as the starting point for a 200 iteration gradient
optimization to “tweak” the matching network. The
goal is to achieve at least a 20 dB return loss across the
operating band with the minimum number of compo-
nents. The results are shown in Table 2.

The RFT algorithm failed to synthesize matching net-
works other than of order four. This was due to its
inability to find an appropriate polynomial to fit the
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■ Figure 4. Output resistance of matching network, R22(wwi)
and the polynomial interpolating these points.

■ Figure 5. Output impedance required to achieve desired
gain, and the output impedance of the synthesized imped-
ance network.

■ Figure 6. Circuit page for MDS simulation.

■ Figure 7. Input impedance of matching and load network
(A1) and the impedance of the load (B1) normalized to the
source impedance.
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required matching network output impedance points,
R22(wi). Since the output of the synthesis algorithm
should ideally be near the global minimum of the match-
ing network “solution space,” most synthesis techniques
suggest refining the matching network solution with a
gradient optimizer. In the case of the RFT-synthesized
network, although a matching network was computed, it
is apparent the algorithm did not yield the best possible
LC ladder network for the given load impedance.

The GRABIM technique, although achieving superior
results, was initiated with a priori information about
the topology that makes comparison unfair and also
highlights the inability of the synthesis algorithms to
perform topology selection. Given the same initial infor-
mation, an MDS random-gradient optimizer “blindly”
arrived at an identical result. The load data for this
problem was presented to Thomas Cuthbert (author of
the GRABIM technique). His solution involved a quali-
tative assessment of the load data and intuitive esti-
mates of the nature of the matching network required.
A pi-network was chosen as the starting topology based
on the fact that the data was inductive, but did not
increase linearly with frequency.

Discussion
This section contains a list of suggestions for using

the RFT algorithm effectively for “real life” matching
problems, as well as a discussion of the effectiveness of
the RFT matching technique.

A. Tips and tricks
• When manually selecting increment frequencies for

the piece-wise linear function, be sure to select a “buffer”
increment frequency outside the range of frequencies
defined by the load impedance. This ensures that the
optimization isn’t unnecessarily constrained at the edge
increment frequencies — these first and last increment
frequencies have a significant influence on the results
when the gain-bandwidth product is limited [1].

• It is not necessary to specify a large amount of load
impedance points — recall that the load impedance is
likely to be smoothly varying, so only a few points across
the band are needed.

• Choose increment frequencies between the dataset
frequencies. In almost all cases, when increment fre-
quencies were placed between every other dataset fre-
quency, good results were obtained.

• Do not specify more than one increment frequency
between two dataset frequencies — this gives the opti-

mizer more degrees of freedom than necessary and may
lead to a computed matching network output impedance
that is not smoothly varying (or discontinuous) and will
likely be unrealizable.

• Use the plot showing T(wi) and T(w) to evaluate the
order of the matching network that may be required.
Ultimately, a circuit will achieve the desired gain
response if a polynomial can be found that approximates
the matching network output resistance. If the final cir-
cuit does not match the desired gain response well, use
this plot to ensure that the user-specified order is not
too small or unnecessarily large. 

• Frequently, the polynomial interpolating T(wi) will
have roots on the imaginary axis; however, this can only
be identified by running a first pass of the matching pro-
gram. It is recommended that the polynomial tuning
correction be disabled for the initial pass. If T(w) has
roots on the imaginary axis, the output of the algorithm
will be invalid; hence, run the program again with the
polynomial tweaking function enabled.

• The last increment frequency should be specified at
two to four times the last frequency in the load imped-
ance dataset. It has been shown [1] that in cases where
a flat pass-band response is desired, the response ripple
for specified power gains closer to unity were optimum
when the final increment frequency was placed close to
the last frequency in the load impedance dataset.
Conversely, for lower specified transducer power gains,
the ripple was minimized for final increment frequen-
cies that were much larger than the last dataset fre-
quency.

• High pass matching networks can be designed by
transforming the load impedance data using a high pass
to low pass transformation, synthesizing the circuit, and
performing an inverse transformation on the synthe-
sized matching network [1].

B. What did we learn?
The RFT synthesis program will likely find a match-

ing network for any impedance matching problem.
However, it is apparent that the success of the technique
depends on finding a positive-real rational transfer func-
tion to approximate the output impedance of the match-
ing network required to achieve the desired gain. Given
such a transfer function can be found, this synthesis
routine will always give the optimal impedance match-
ing network (for the given matching network order and
desired gain response), because the output impedance of
the match at each frequency is determined exactly. The
preamplifier design example synthesis experienced
problems finding a positive-real transfer function; as a
result, the synthesized circuit did not exactly match the
desired gain response. The achievability of a matching
problem differs depending on the load impedance,
desired gain response, and the order of the match
required. 

The “matching synthesis problem” can be considered
as two separate problems: finding the best topology and
finding the best component values. The results of the
GRABIM and MDS techniques show that although an

RFT RFT+OPT GRABIM MDS

335 MHz 15.3 dB 12.5 dB 20.0 dB 21.4 dB
370 MHz 14.6 dB 36.8 dB 31.3 dB 56.6 dB
405 MHz 4.4 dB 9.5 dB 23.1 dB 20.5 dB
Components 4 4 2 2

■ Table 2. Preamplifier design example: input return loss.
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optimal circuit can be synthesized,
almost all synthesis techniques
either constrain the topology or
require additional intuitive insight
into candidate topologies. Possibly,
neural network computational tech-
niques or adaptive algorithms can
make this aspect of matching net-
work synthesis robust.

Also, the synthesized circuits
only provide a starting point for
“physical” circuit design due to dis-
crete-value component parts and
varying load, source and device
impedances.

Conclusions
The Carlin synthesis technique is

effective in determining the opti-
mum low pass minimum impedance
LC ladder network to match a load
impedance to a desired gain
response. The main disadvantage of
the Carlin technique is that a topol-
ogy must be chosen a priori; howev-
er, the output of the synthesis
process can definitely aid in the
selection of the minimum required
order of the matching network. The
Carlin technique will give results
that are better than blindly using a
gradient optimization routine on a
given topology; however, a combina-
tion random-gradient optimization
will yield results nearly identical to
the Carlin method, and the tech-
nique may not yield a network satisfying the desired
gain response for all load impedance problems. In gen-
eral, the technique can be used to confidently synthesize
optimum LC matching networks and can be useful to
expedite the design process.

From a theoretical point of view, the Carlin technique
provides an elegant means of integrating network theo-
ry with optimization to improve the design process. The
algorithm described in this report can be further refined
to perform double matching synthesis; however, the
technique presented here provides a fast and effective
tool for matching network design. ■

References
1. Abrie, P. L. D., The Design of Impedance-Matching

Networks for Radio-Frequency and Microwave
Amplifiers, Artech House, 1985.

2. Carlin, J. and Yarman, B., “A Simplified Real
Frequency Technique Applied to Broad-Band Multistage
Amplifiers,” IEEE-MTT, Vol. 30, 12, December 1982.

3. Carlin, J. and Amstutz, P., “On Optimum Broad-
Band Matching,” IEEE-CAS, Vol. 28, 5, May 1981.

4. Cuthbert, T., Circuit Design Using Personal
Computers, John Wiley & Sons, 1983.

5. Cuthbert, T., “Broadband Impedance Matching
Methods", RF Design,” August 1994.

6. Rorabaugh, C., Circuit Design and Analysis -
Featuring C Routines, McGraw-Hill, 1992.

7. Van Valkenburg, M., Introduction to Modern
Network Synthesis, John Wiley & Sons, 1960.

Author Information
Anthony Gerkis (B.A.Sc., M.A.Sc., P.Eng.) is an RF

design engineer with Motorola's Toronto Design Center
in the Land Mobile Products Sector. Recently published
papers include presentations at the Symposium for
Magnetic Resonance in Medicine in Nice, France (1995)
and New York (1996) on new magnetic resonance imag-
ing (MRI) techniques. For information on obtaining a
copy of a MatlabTM implementation of the “Real
Frequency” algorithm, contact the author at
gerkis@ibm.net. Several example data sets from pub-
lished synthesis resources, as well as “real-world” mea-
sured data from actual design projects are included with
the source code.

The author would like to acknowledge T. Cuthbert for
assisting in performing analysis using the GRABIM
technique.

Approximate output resistance of
matching network with piece-wise
linear function

Calculate power gain at discrete
frequencies specified by load data

Compute output impedance using
Hilbert transform

Determine output resistance at
discrete load data frequencies

O
pt

im
iz

e
O

pt
im

iz
e

R22(wi)

R22(s)

R22(s)

Z22(s)

ZLC(s)

GT(wi)

Z22(wi)

Z22(wi)

Find resistance function to approx.
output resistance of match network

Ensure resistance function is a
stable transfer function

Utilize Gewertz procedure to
form impedance function

Form the corresponding
reactance function

1. Load impedance at
discrete frequencies

3. Order of matching network

2. Desired gain at each
discrete frequency

Perform continued fraction
expansion

Frequency and impedance
scaling

Final Circuit Component Values(continued above right)

(continued from below left)

■ Flow chart diagram for the Carlin RFT algorithm.


