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Abstract
An increasing number of high-performance distributed sys-
tems are written in garbage collected languages. This re-
moves a large class of harmful bugs from these systems.
However, it also introduces high tail-latency do to garbage
collection pause times. We address this problem through a
new technique of garbage collection avoidance which we call
BLADE. BLADE is an API between the collector and appli-
cation developer that allows developers to leverage existing
failure recovery mechanisms in distributed systems to coor-
dinate collection and bound the latency impact. We describe
BLADE and implement it for the Go programming language.
We also investigate two different systems that utilize BLADE,
a HTTP load-balancer and the Raft consensus algorithm. For
the load-balancer, we eliminate any latency introduced by the
garbage collector, for Raft, we bound the latency impact to a
single network round-trip, (48 µs in our setup). In both cases,
latency at the tail using BLADE is up to three orders of mag-
nitude better.

1. Introduction
Recently, there has been an increasing push for low-latency
at the tail in distributed systems [18, 45, 54]. This has arisen
from the needs of modern data center applications which con-
sist of hundreds of software services, deployed across thou-
sands of machines. For example, a single Facebook page load
can involve fetching hundreds of results from their distributed
caching layer [42], while a Bing search consists of 15 stages
and involves thousands of servers in some of them [31]. These
applications require latency in microseconds with tight tail
guarantees.

Recent work addressed this at the operating system and
networking layer [3, 9, 32, 48]. However, this is only half the
picture. Increasingly, application developers choose to build

[Copyright notice will appear here once ’preprint’ option is removed.]

0.9900

0.9925

0.9950

0.9975

1.0000

1 10 100
Request Latency (ms)

C
D

F
 [l

at
en

cy
>

x]

GC Status

off

on

Figure 1: CDF of request latency for a ZooKeeper-like [29] repli-
cated key-value store using the Raft [44] consensus algorithm writ-
ten in Go. System was configured with 3 nodes and 10 clients gen-
erating a total of 250 requests-per-second (3:1 get/set ratio) over
10 minutes. A parallel, stop-the-world (STW) mark-sweep collec-
tor was used, with a heap size of 500MB for a 200MB working set.

distributed systems in garbage collected lagnuages. For ex-
ample, a large number of distributed systems are written in
Java [29, 58, 65], and Go [21, 24–26]. Garbage collected lan-
guages are attractive because manual memory management is
extremely bug-prone [13, 17].

Unfortunately, garbage collection introduces high tail-
latencies due to long pause times. For example, Figure 1
shows the impact of garbage collection on the tail-latency of
one such distributed system. While many distributed systems
require average and tail-latencies in microseconds, garbage
collection pause times can range from milliseconds for small
workloads to seconds for large workloads.

Moreover, dealing with pause times in the application is
hard. The impact of garbage collection is often unpredictable
during development and difficult to debug once deployed.
First, from the programmers perspective, garbage collection
can occur at any point during execution. Second, performance
can vary greatly from system to system, or even over the life-
time of a single system [20, 59]. Finally, tuning the garbage
collector of a deployed system is hard because performance
is workload dependent. As a result, users must continually
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adjust run-time system parameters (e.g., generation sizes)
based on production workloads.

None of the current approaches to garbage collection are
suitable for this new set of requirements where the 99.9th per-
centile matters. On one side, language implementers attempt
to build faster collectors [23, 27, 51, 61]. However they are
generally concerned with average case behaviour and opti-
mising across a large set of use-cases [11]. As such, pause
times at the tail are still too long. Moreover, the effort to
build better collectors must be replicated for each language
runtime. On the other side, developers deploying such sys-
tems in production may turn off the garbage collector all to-
gether1, or switch to manual memory management, giving up
the productivity gains of memory-safe languages [49].

We propose a new approach to building distributed sys-
tems in garbage collected languages, called BLADE, that
gives control over tail-latency back to the programmer. In-
stead of attempting to minimise pause times, distributed sys-
tems should treat pause times as a frequent, but predictable
failures. BLADE is an interface to the run-time system that al-
lows programmers to participate in the decision to pause for
collection, customising the collection policy to their system.

BLADE’s simple API allows systems builders to:

1. eliminate garbage collection related latency

2. by leveraging system-specific failure recovery mecha-
nisms to mask pause times,

3. and model the performance impact of garbage collection
without knowledge of the production workload.

In this paper, we describe and evaluate the BLADE API.
We implemented BLADE for the Go programming language
and used it to eliminate garbage collection related tail-latency
in two different distributed systems. The first system is a
cluster of web application servers behind a load-balancer, and
the second is the Raft [44] consensus algorithm.

We compare BLADE in both systems against the default
Go garbage collector, and the optimal solution for perfor-
mance of no garbage collection at all. For the HTTP clus-
ter, BLADE completely eliminates any latency impact on re-
quests caused by garbage collection, while for the Raft con-
sensus algorithm, it bounds the latency impact to a single ex-
tra network RTT (48 µs in our experimental setup). In end-to-
end tests, this matches the performance of the optimal system
with no GC.

The rest of the paper is organized as follows. In Section 2,
we motivate the problem and explain why existing solutions
do not work. In Section 3 we outline BLADE. In Section 4 we
explore two end-to-end distributed systems that use BLADE
and in Section 5 we evaluate both systems. In Section 6 we

1 Generational garbage collectors often allow users only to disable collection
for the old generation, but this just serves to delay, not eliminate, memory
exhaustion

discuss the results and limitations, while in Section 7 we
describe related work. Finally, we conclude in Section 8.

2. Background
2.1 Data Center Performance Today
The performance demands of applications running in data
centers are changing significantly. To enable rich interactions
between services without impacting the overall latency expe-
rienced by users, average latencies must be in the few tens
or low hundreds of microseconds [8, 54]. Because a single
user request may touch hundreds of servers, the long tail of
the latency distribution we must also consider [18, 31], with
each service node ideally providing tight bounds on even the
99.9th percentile request latency.

Today, most commercial Memcached deployments provi-
sion each server so that the 99th percentile latency does not
exceed 500 µs [35]. Recent academic results such as the IX
operating system can run Memcached with 99th percentile
latencies of under 100 µs at peak [9]. The MICA key-value
store can achieve 70 million requests-per-second with tail-
latencies of 43µs [37]. Current research projects such as
RAMCloud [45, 47] are targeting 10 µs or lower RPC laten-
cies.

2.2 State of Garbage Collection
We give a brief overview of garbage collection and the trade-
offs for the main approaches. Garbage collectors deal with
two major concerns: finding and recovering unused memory,
and dealing with heap fragmentation, often by relocating live
objects. We will look at four collector designs: stop-the-world
(STW), concurrent, real-time and reference counting.

Stop-the-world Stop-the-world collectors are the oldest,
simplest and highest throughput collectors available [22]. A
STW GC works by first completely stopping the application,
then starting from a root set of pointers (registers, stacks,
global variables) traces out the applications live set. Objects
are either marked as live, or relocated to deal with fragmenta-
tion. Next, the application can be resumed and any unmarked
objects added to the free list.

Their simplicity and high-throughput make them common.
For example, Go, Ruby, and Oracle’s JVM (by default) use
STW collectors. The downside is that pause times are pro-
portional to the number of live pointers in the heap. As a re-
sult, state-of-the-art STW collectors can have pause times of
10–40ms per GB of heap [22].

Concurrent Concurrent collectors attempt to reduce the
pause time caused by STW collectors by enabling the GC
to run concurrently with application threads. They achieve
this by using techniques such as read and write barriers to de-
tect and fix concurrent modifications to the heap while tracing
live data and/or relocating objects. For example, a common
approach to concurrent tracing is to use write barriers, either
through inline code or virtual memory protection, whereby
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any modification to the heap will enter a slow path handler
that adds the pointer to the list of pointers to trace [23, 27, 64].
For handing concurrent relocation of objects to reduce frag-
mentation, either Brook’s style read barrier [12] are used,
where all pointer dereferences check to see if the object has
been replaced with a forwarding pointer pointing to the ob-
jects new location, or, direct access barriers [7, 15, 23], where
a read barrier is used to fix up any pointer to point to the new
location as the pointer is read from the heap.

Because of these techniques, pause times for the best con-
current collectors are measured in the few milliseconds [4, 23,
30]. However, concurrent collecters have lower-throughput,
higher implementation complexity and edge cases that still
require GC pauses. First, concurrent collectors reduce appli-
cation throughput between 10–40% and increase memory us-
age by 20% compared to STW collectors [19, 22, 64]. This
is due to the overhead of handling barriers, forwarding point-
ers and synchronization between the GC threads and appli-
cation. Second, most concurrent collectors have corner cases
that trigger long pauses. For example, STW pauses are often
used to start or end collector phases [27, 64], the amount of
work that can occur in a slow-path for an allocation or barrier
is variable and often unbounded [27, 50], and high-allocation
rates can cause the application to outpace the collector and
pause [51]. Finally, concurrent collectors are incredibly com-
plex. Oracle’s JVM, for example, has two concurrent collec-
tors, CMS and G1, but both have pause times in the hundreds
of milliseconds due to significant stages of their collection
cycle being STW.

Real-time Garbage collectors designed for real-time sys-
tems take the approaches of concurrent collectors even fur-
ther, many offering the ability to bound pause times. The
best collectors can achieve bounds in the tens of microsec-
onds [50, 51], however doing so comes at a high throughput
cost ranging from 30%–100% overheads, and generally in-
creased heap sizes of around 20% [50, 51]. This is due to tech-
niques such as fragmented allocation [6] to avoid the recom-
pacting stage taken by most non-real-time concurrent collec-
tors to handle fragmentation. Fragmented allocation allocates
all objects at small, fixed size chunks, breaking up logical
objects larger than the chunk size. The extra indirection can
greatly impact system performance.

Reference counting A completely different approach to a
tracing garbage collector is reference counting. Each object
has an integer attached to it to count the number of incom-
ing references, which once it reaches zero, indicates the ob-
ject can be freed. It’s largely predictable behaviour and sim-
ple implementation makes it common, for example, Python,
Objective-C and Swift all use reference counting.

In general, reference counting greatly improves pause
times since there is no background thread for collection,
instead reclaiming memory is a incremental and localised
operation. However, three problems emerge: lower through-

put, free-chains and cycles. First, reference counting suffers
from poor throughput due to the need for atomic increments
and decrements on pointer modifications. On average refer-
ence counting has 30% lower throughput compared to trac-
ing collectors [10, 56]. Recent work has improved this to be
competitive [56, 57] but does so by incorporating techniques
from tracing collectors and bringing pauses. Second, refer-
ence counting collectors can suffer from long pauses on free
operations when doing so causes a long chain of decrements
and frees to other objects in the heap. Third, and finally, ref-
erence counting suffers from it’s inability to collect cyclic
data structures. This is solved by either complicating the in-
terface to the developer and asking them to break cycles, or
by including a backup tracing collector to collect cycles peri-
odically [56]. Python for example takes this approach.

3. Design
BLADE is an interface to the run-time system (RTS) of the
language that allows programmers to participate in the deci-
sion to pause for collection, letting them customize the col-
lection policy to their system. BLADE is not a new approach
to garbage collection, but a new approach to dealing with its
performance impact in distributed systems.

Table 1 summarises the API for BLADE, which consists of
three simple functions. The regGCHand (handler) simply
setups a function as a target for an upcall from the RTS. The
startGC (id) starts the collector, passing in an id number
previously given to the application through an upcall. The id
argument is a monotonically increasing argument over up-
calls and serves to make the function idempotent. Finally,
the upcall function gcHand (id, allocated, pause), is
invoked by the RTS at the start of every collection and allows
the application developer to decide if the collection should
occur immediately or be delayed. The id argument identifies
this collection event, while the a argument indicates the cur-
rent heap size. Finally, the p argument gives an estimate by
the collector on the time that this collection will take. The
function can either return a boolean result of true to indicate
that the RTS should immediately perform the collection, or
it can return false to delay the collection until startGC is
called.

This API is simple enough that most garbage collected
languages can implement it in a hundred lines of code or so.
For example, it took 112 lines of code to implement BLADE
for the Go programming language.

While there are a few different design choice for the API,
we decided on this one as it is minimal and easily sup-
ported by languages, yet expressive enough for supporting
our end-to-end systems. The parameters passed through to
the gcHand function are where we had the most choice, and
indeed the right choice here will likely vary slightly from lan-
guage to language. For exampe, in Java, a third parameter of
the amount of heap remaining would be appropriate, but our
target language of Go doesn’t support any notion of bound-
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Table 1: BLADE API

Operation Description

void regGCHand (handler) Set function to be called on GC
bool gcHand (id, allocated, pause) Upcall to schedule GC event
void startGC (id) Start the GC

ing the heap size. The purpose of the arguments to gcHand is
to allow the application developer to make appropriate policy
decisions on when to collect. This will generally be a binary
choice of collecting now, or deferring collection until appro-
priate failure recovery actions have been taken to minimize
the latency impact. The right decision for the application will
depend on the expected latency impact of the collection as
short collection do not make sense to coordinate globally. The
estimated pause time in our current Go implementation is de-
rived by simple linear extrapolation from previous collection
pause times at different heap sizes.

As BLADE allows delaying collection, the RTS must de-
cide both when to make the upcall to the application and what
to do if memory is exhausted before the collection is sched-
uled. For the first situation we add a configurable low-water-
mark parameter to the RTS to allow specifying how much
room for delay should be left when upcalling into the applica-
tion. For the exhaustion situation, we simply have the collec-
tor run immediately. Any future call to startGC (id) with
that collection events id number will be ignored. This retains
safety and simply reduces performance in the worst case to
one without BLADE. We initially tried adding a second up-
call from the RTS to the application to notify them when this
timeout occured, but found that it was both complex to handle
and generally of little benefit. Given that this is also expected
to be rare, moving startGC (id) to be idempotent resulted
in what we believe to be a stronger design.

4. BLADE Systems
In this section, we apply BLADE to two different end-to-end
distributed systems. First we look at the simplest case for
BLADE, a cluster of stateless HTTP servers behind a load-
balancer, next, we look at the Raft [44] consensus algorithm.

4.1 HTTP Proxy: No shared state
The most natural application domain for BLADE is a fully
replicated service where any server can service a request.
Here we consider a load-balanced HTTP service where a
single coordinating load-balancer proxies client requests to
many backend servers. Typically, all backend servers are
identical and the load-balancer uses simple round-robin to
schedule requests. The load-balancer can also detect when
backend servers fail by imposing a timeout on requests. How-
ever, since some HTTP requests might take a while to ser-
vice, the load-balancer cannot easily distinguish between a
misbehaving server servicing a fast request, and a properly

behaving server servicing a slow request. As a result, time-
outs are typically set high – for example, in the NGINX web
server [2], the default timeout is 60 seconds.

The HTTP load-balanced distributed system has a few
unique properties. First, each request can be routed to any
of the replicas. Second, any mutable state is either stored ex-
ternally (e.g., in a shared SQL database) or is not relevant for
servicing client requests (e.g., performance metrics). Third,
the HTTP load-balancer acts as a single, centralized coordi-
nator for all requests2. These three properties make BLADE
easy to utilize.

The approach is to have a HTTP server explicitly notify
the load-balancer when it needs to perform a collection, and
then wait for the load-balancer to schedule it. Once the collec-
tion has been scheduled, the load-balancer will not send any
new requests to the HTTP server, and the HTTP server will
finish any outstanding requests. Once all requests are drained,
it can start the collection, and once finished, notify the load-
balancer and begin receiving new requests. In most situations,
the load-balancer will schedule a HTTP server to collect im-
mediately. However, it may decide to delay the collection if a
critical number of other HTTP servers are currently down for
collection. This allows the load-balancer to make decisions
with throughput impacts in mind. Figure 2 shows the pseu-
docode for how a backend server uses BLADE. One subtlety
is when deciding to handle a collection, the application starts
a new thread (a cheap operation in Go) as the thread that in-
voked the callback is another application thread that just tried
to allocate, so may be holding locks.

4.1.1 HTTP: Performance
Using BLADE with the HTTP cluster allows us to trade ca-
pacity for better latency, as such, no request should ever block
waiting for the garbage collector. We can model this formally
to investigate the impact of a GC event on the system. We
break down the stages involved at a single HTTP backend for
performing a garbage collection using BLADE; this can be
seen in Figure 3. It consists of Tschedule, the time to both re-
quest and be scheduled to GC by the load-balancer, Ttrailers,
the time for the HTTP server to service any outstanding re-
quests, Tgc, the time to perform the garbage collection, and

2 Some deployments have multiple HTTP load-balancers, themselves load-
balanced with DNS or IP load-balancing, however, commonly each load-
balancer in this case manages a separate cluster anyway to make more
effective load-balancing decisions.
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1 func bladeGC(id)
2 rpc(controller, askGC)
3 waitTrailers()
4 startGC(id)
5 rpc(controller, doneGC)
6
7 func handGC(id, allocd, pause) bool
8 i f threshold(allocd, pause)
9 return true

10 e l se
11 // start in new thread
12 go bladeGC(id)
13 return false

Figure 2: Pseudocode (Go) for HTTP Cluster using BLADE.

Trpc, the time to send an RPC notifying the load-balancer the
GC is finished. This gives us the following model:

HTTP Cluster GC Model

LatencyImpact = 0
CapacityLoss = 1 server
CapacityDowntime = Ttrailers +Tgc +Tnoti f y
EventTime = Tschedule +CapacityDowntime

In general, we expect Tschedule to be 1 network round-trip-
time (RTT), while Tnoti f y should be 1

2 the network RTT. The
value of Ttrailers is application specific, but importantly, is
a term expressed in units that the application developer is
intimately familiar with.

The latency impact of zero is of course only true when the
current throughput demand on the cluster is low enough to be
satisfied by the remaining servers without queuing. However,
even when this isn’t the case as the load-balancer spreads all
requests evenly over the remaining servers, no individual re-
quest experiences a disproportionate latency impact. Without
BLADE, the latency impact on requests of garbage collec-
tion would be the length of the GC pause, Tgc, potentially far
longer than 0. On the downside, using BLADE does extend the
duration of the capacity downtime by Ttrailers +Tnoti f y, which
has a lower bound of half the RTT.

Importantly this model show how BLADE allows develop-
ers to achieve the three goals we started with: bounding la-
tency, do so using failure recovery mechanisms present in the
system, and model the performance impact of garbage col-
lection on the system. For a HTTP cluster, BLADE bounds la-
tency to 0 by using the load-balancer and allows us to model
this without concern for workload, heap size or the underly-
ing garbage collection algorithm.

4.2 Raft: Strongly consistent replication
In the HTTP load-balancer, because there is no shared muta-
ble state at the server, any server can service any request and,
as a result, we can treat garbage collection events as tempo-
rary failures. The same is true when mutable state is consis-
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Figure 3: Capacity of a HTTP server over time during a garbage
collection cycle with BLADE.

tently shared between all servers, for example, as in a Paxos-
like [34] system that uses a consensus algorithm for strongly
consistent replication. In this section we consider how to use
BLADE for the Raft [44] consensus algorithm.

In Raft, during steady-state, all write requests flow through
a single server referred to as the ‘leader’. Other servers run as
‘followers’. Writes are committed within a single round-trip
to a majority of the other servers, leading to sub-millisecond
writes in the common case3. Garbage collection pauses can
hurt cluster performance in two cases. First, when the leader
pauses, all requests must wait to be serviced until GC is com-
plete. If GC pause time exceeds the leader timeout (typically
150ms), the remaining servers will elect a new leader before
GC completes. Second, if a majority of the servers are paused
for GC, no progress can be made until a majority are live
again. The second case is worse, because if garbage collec-
tion pauses are very long, there is no built-in way for the sys-
tem to make progress during this time. The probability of this
occurring is higher than expected as the memory consump-
tion will be roughly synchronized across servers because of
the replicated state machine each on is executing.

We use BLADE with Raft as follows. First, when a fol-
lower needs to GC, we follow a protocol similar to the HTTP
load-balanced cluster. The follower notifies the leader of it’s
intention to GC and waits to be scheduled. The leader sched-
ules the collection as long as doing so will leave enough
servers running for a majority to be formed and progress
made. We only consider servers offline due to GC for this,
as servers down for other reasons could be down for an ar-
bitrary amount of time. The leader must also timeout servers
considered down for garbage collection to prevent blocking,
marking their GC as completed, in the rare event that they be-
come unavailable during a collection. One important differ-

3 In a low-latency network topology and persistent storage (such as flash
drives).
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1 // run in own thread
2 func bladeClient()
3 reqInFlight := 0
4 forever
5 se l ec t
6 case id := ← gcRequest:
7 reqInFlight = id
8 rpc(leader, askGC)
9

10 case id := ← gcAllowed:
11 reqInFlight = 0
12 startGC(id)
13 rpc(leader, doneGC)
14
15 case leader := ← leaderChange:
16 i f reqInFlight != 0
17 rpc(leader, askGC)
18
19 func handGC(id, allocd, pause) bool
20 i f threshold(allocd, pause)
21 return true
22 e l se
23 // start in new thread
24 go func() { gcReq ← id }()
25 return false

Figure 4: Pseudocode (Go) for Raft server, when functioning as a
follower and not a leader, using BLADE. The← symbols represent
message passing between threads using channels.

ence with Raft compared to the HTTP load-balancer is that
the leader doesn’t need to stop sending requests to followers
while they are collecting, and neither do followers need to
wait to finish any outstanding requests. As Raft is designed to
make progress with servers unavailable, we can rely on this
and have a follower proceed with GC. We present the pseu-
docode for the follower situation in Figure 4, including the
retry logic for sending requests to the new leader if it changes
over the course of a collection request. The code makes use
of channels, a message passing mechanism provided in Go.

The second situation, when a server is acting as leader for
the cluster, is more interesting. Since the cluster cannot make
progress when the leader is unavailable, we switch leaders
before collecting. Once the leadership has been transferred,
the old leader (now a follower) runs the same algorithm as
presented previously for followers in Figure 4. A leadership
switch like this can be done in just 1

2 the RTT of the network
by having the current leader send a broadcast to all servers
in the cluster notifying of the new leader [43]. The current
leader may need to delay switching leadership until it knows
that the next chosen leader is up-to-date, but during this time,
the cluster can continue servicing requests. We present the
Pseudocode for the leader situation in Figure 5. In this design
the current leader chooses the last server that collected to be
the next leader, or a random server if this information isn’t
known. Since the current leader acts as the coordinator for
garbage collection, it also keeps track of how many servers

1 // run in own thread
2 func bladeLeader() void
3 used := 0
4 pending := queue.New()
5 lastGC := cluster.RandomServer()
6 forever
7 se l ec t
8 case from := ← gcRequest:
9 i f used + 1 ≥ quorum

10 pending.End(from)
11 e l se
12 used++
13 i f from == myID
14 switchLeader(lastGC)
15 e l se
16 rpc(from, allowGC)
17
18 case from := ← gcFinished:
19 lastGC = from
20 i f pending.Len() == 0
21 used−−
22 e l se
23 from = pending.Front()
24 i f from == myID
25 switchLeader(lastGC)
26 e l se
27 rpc(from, allowGC)
28
29 case leader := ← leaderChange:
30 used = 0
31 pending.Clear()
32 }

Figure 5: Pseudocode (Go) for Raft server, when functioning as a
leader, using BLADE.

are currently collecting, and queues requests for future col-
lections from servers that cannot be scheduled immediately.

Finally, outstanding client requests at the old leader must
be handled. One method is to notify clients of the new leader
and have them retry. This is simple but incurs more latency
than required. Instead, the old leader can act as a proxy for
these requests, forwarding them to the new leader in the same
RPC as the election switch message. The new leader can
either reply to clients through the old leader, or directly to
them, depending on the client design.

4.2.1 Raft: Performance
As before with the HTTP cluster, we can model the perfor-
mance impact on Raft of a GC event when using BLADE.
First, we model the impact when a follower collect, and sec-
ondly, when the leader collects.

In the first case, when a follower collects, the Raft cluster
can service this GC without any impact on the latency of the
system. Throughput should also be unaffected, although we
are making the assumption that the cost to bring a unavailable
server up-to-date after a GC does not noticeably affect the
throughput and latency of the cluster. This gives us the model
below for the impact of a follower GC event, where we expect
Tschedule to be the network RTT in the common case:
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Raft Follower GC Model

LatencyImpact = 0
CapacityLoss = 0
EventTime = Tschedule +Tgc

In the second case, when a leader collects, then we will
take the additional cost of a fast leader election and proxying
queued client requests to the new leader. This gives us the
model below:

Raft Leader GC Model

LatencyImpact = Tf astelect +Tproxy
= 1RT T

CapacityLoss = 0
EventTime = Tf astelect +Tproxy +Tgc

= 1
2 RT T +Tproxy +Tgc

One complication with the leader case, captured by the
Tproxy value, is that the leader needs to both forward any
queued requests from clients to the new leader, and also
should inform clients that a leadership change has occurred.
The time it takes to do this, and so for how long the leader
should delay beginning its GC, is highly dependent on the
system setup. With a small number of known clients, the
leader can broadcast to them that a new leader has been
elected. With a larger, or unknown number of clients, a proxy
layer may be desirable that clients go through.

5. Evaluation
To evaluate BLADE, we used it in two distributed systems,
first a HTTP cluster behind a load-balancer, and second, the
Raft consensus algorithm. Both systems are previously de-
scribed in Section 4.

For evaluating the performance of the GC system, we use
the standard Go garbage collector since all our systems are
written in the Go programming language. We use Go version
1.4.2, the latest at the time of writing. Go currently uses a
parallel mark-sweep collector, with marking done as a stop-
the-world phase and sweeping done concurrently with the
application (mutator) threads. Because this GC design is far
from state-of-the-art (although still very common in modern
languages), we also compare against the ideal case of no
garbage collection at all. We do this by simply disabling
Go’s garbage collector, so memory is never reclaimed. Go
by default also runs the collector every two minutes if not
run recently in order to give memory back to the operating
system. For all of the evaluations below we disable this as we
felt it unfairly favoured BLADE by being a explicit source of
synchronization.

All experiments were run over a 10 GbE network, using
machines with Intel Xeon E3-1220 4 core CPU’s with 64 GB

Component SLOC

Web Application 54
Load-balancer Coordinator 174

Table 2: Source code changes needed to utilize BLADE with a web
application cluster.

of RAM and running FreeBSD 10.1. The network RTT was
measured to be 48µs on average.

5.1 HTTP Load-Balancer Performance
In this section we investigate the performance impact of using
BLADE with a HTTP load-balanced cluster.

We built a simple web application that allows users to
search and retrieve movie information from a backing SQL
database. The web app keeps an in-memory local cache of
recent movie insertions and retrievals to improve perfor-
mance by avoiding a DB lookup on each requests. The ap-
plication does not allow updates to existing records. We run
HAProxy [60] version 1.5 (latest at time of writing) in front
of three servers, using round-robin to load balance requests
across all three.

Adding support for BLADE to the web application required
228 SLOC to be added. Of these, 54 were added to the web
application itself, while the other 174 were for implementing
a controller for the load balancer to coordinate the GC at
each web application server and ensure only one was ever
collecting at any point in time. As HAProxy already supports
a TCP interface for enabling and disabling backends, the
coordinator is only required when enforcing capacity SLAs.

We also evaluated the latency behaviour of the three dif-
ferent configurations of the cluster using a fifth machine to
generate load. A CDF of the request tail-latency when gener-
ating 6,000 requests-per-second can be seen in Figure 6. We
ran the experiment for six minutes, during which each node
collects three times. We ran the experiment four times in to-
tal for each configuration and averaged the results. BLADE
achieves a result so similar to the GC-Off configuration that
we have to present them on the same line in Figure 6. Overall
performance of each configuration can be seen in Table 3. The
GC-On configuration has tail-latencies far beyond the time the
application is paused by the garbage collector. This appears
to be due to the impact of queues building up, occasional net-
work retransmissions when buffers overflow, and unfair ser-
vicing of pending sockets by Go. This amplification affect has
previously been explored [36, 63].

During these runs we also observed occasions when the
garbage collection event at a backend server overlapped with
another. An example of such an overlap can be seen in Fig-
ure 7, with the latency of requests to each server shown as
the GC event occurs at servers B and C. Out of a total of 36
observed collections across the three servers, 8 of them over-
lapped for an average of 22.2% of collections. While this is
likely high due to the experimental setup, real-world systems
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GC-Off BLADE GC-On

Mean 2.312 2.311 2.403
Median 2.296 2.294 2.297
Std. Dev. 0.579 0.582 3.395
Max 7.847 7.443 164.206
Avg. GC-Pause 0 12.423 12.339

Table 3: Latency measurements of requests to 3-node HTTP cluster
behind a load-balancer under different GC configurations. Timings
are in milliseconds (ms). Same experiment as Figure 6.
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Figure 6: CDF of request tail-latency to 3-node HTTP cluster
behind a load-balancer. BLADE and the GC-Off configuration are
so similar that their lines overlap. Load generator is simulating
400 connections to the cluster, sending 6,000 requests-per-second.
Each node has a 1GB heap for a 150MB live set, and allocates on
average at 12.5MB/s. Each node collects 3 times during the 6 minute
experiment.

often have external sources of synchronization that increase
the chances of these overlaps occurring. For example, the Go
default GC policy of running every two minutes (which we
disabled), or when sudden surges of traffic hits the cluster.

Finally, we ran a second experiment on the same cluster
to check the throughput that each configuration is capable of,
the results of which are presented in Table 4. As expected,
BLADE doesn’t cause any drop in throughput compared to the
regular GC-On setup, both achieving around 52,000 requests-
per-second. The GC-Off configuration however achieves a
lower throughput due to the overhead of constantly requesting
fresh memory from the OS, consuming a 34GB heap by the
end of the experiment. We used these numbers to run one
final latency test, but generating 40,000 requests-per-second
this time, close to the peak for all three configurations. The
results can be seen in Figure 8. The slight penalty that the
BLADE configuration pays at the tail, from reduced capacity,
when under load, can be seen when comparing GC-Off with
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Figure 7: Request latency of HTTP cluster broken out by backend
server during a collection event at two of the workers. Over four
runs of the latency experiment we observed 36 collections, with 8 of
them overlapping, or 22.2%.

GC-Off BLADE GC-On

Requests/s 42,643 51,624 51,983
Std. Dev. 2,213 2,573 672

Table 4: Max throughput of each configuration for the HTTP
cluster. Results are averaged from three runs, each run being 6
minutes long.

BLADE. BLADE is on average 100–300 µs slower from the
95th percentile on.

5.1.1 Web Application Frameworks
Using BLADE in a web application is generic enough in
nature that we can package it as a library. To demonstrate
this we wrote a Go package that can be included by any web
application that uses the popular Gorilla Web Toolkit [1]. It’s
tied specifically to Gorilla because we need to be able to
detect when all trailing requests have completed (or be able
to cancel them if desired). By including this package, any
Gorilla web application that can work with a client session
being handled by different servers, can benefit from BLADE.

5.2 Raft Performance
In this section we investigate the performance impact of using
BLADE with the Raft consensus algorithm. As Raft is not a
standalone system, we use Etcd [16], a replicated key-value
store with a ZooKeeper [29] inspired API that uses Raft for
the consensus algorithm.

To efficiently use BLADE in Etcd involved implementing
support for fast-leadership transfers, and also handling GC
upcalls using the algorithms outlined in Figure 4 and Figure 5.
This required 563 lines of code to be changed (largely addi-
tions) in Etcd, with the breakdown shown in Table 5. As fast-
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Figure 8: CDF of request tail-latency to 3-node HTTP cluster be-
hind a load-balancer. Load generator is simulating 400 connections
to the cluster, sending 40,000 requests-per-second. Each node has
a 1.5GB heap for a 200MB live set, and allocates on average at
83.3MB/s. Each node collects 17 times during the 6 minute experi-
ment, with an average pause time of 14.45ms.

Component SLOC

Fast-leader switch 214
Blade GC support 349

Table 5: Source code changes needed to utilize BLADE in Etcd.

leadership transfers are useful for purposes beyond BLADE,
it is fair to count the effort needed to support BLADE in Etcd
as 349 SLOC.

For evaluating the performance of BLADE with Raft, we
set up a three node Etcd cluster under three different config-
urations. First, when running with the standard Go garbage
collector, secondly, when running with the garbage collector
disabled, and finally, when using BLADE. We ran a single ex-
periment were we loaded 600,000 keys into Etcd and then
sent 100 requests per second at regular intervals for 10 min-
utes to the cluster using a mixture of reads and writes in a
3 : 1 ratio. We track the latency of each request after the ini-
tial load of keys. We ran the experiment three times for each
configuration and took the average of the three. In all con-
figurations the standard deviation between the three runs was
less than 5%. We use a low request rate as at this time, Etcd
is early in its development and doesn’t support a high request
rate, (peaking at around 400 requests/s on our setup) becomes
very unstable anywhere close to its peak

With the GC enabled, this experiment peaks at consum-
ing 473MB of memory. While very small by modern server
standards, it is sufficient to evaluate our results since BLADE
thankfully is not affected by heap size in terms of latency im-
pact on requests.

Mean Median Std. Dev. Max

GC-Off 0.532 0.530 0.031 1.127
BLADE 0.505 0.499 0.030 1.015
GC-On 0.589 0.517 2.112 95.969

Table 6: Latency measurements of SET requests to Etcd cluster
under different GC configurations. Timings are in milliseconds (ms).

BLADE GC-Off GC-On

95th 0.52 0.54 0.54
99th 0.57 0.57 0.56
99.9th 0.62 0.67 28.81
99.99th 0.70 1.03 86.98
99.999th 0.80 1.08 94.22
99.9999th 0.97 1.12 95.96

Table 7: SLA measurements for different Etcd configurations. Tim-
ings are in milliseconds (ms).

The results for set request latencies for all three configu-
rations are shown in Table 6. Excluding tail-latency, all three
achieve similar performance levels, although BLADE outper-
forms each configuration across the board. BLADE achieves a
mean of 505 µs and a worst-case of 1.01ms, GC-Off a mean
of 532 µs and a worst-case of 1.13ms, and GC-On a mean of
589 µs and a worst-case of 95.96ms. The reason BLADE even
outperforms the GC-Off configuration is due to the penalty
GC-Off pays from the extra system calls and lost locality
from requesting new memory rather than ever recycling it.
Results for get requests show the same relation among the
three configurations.

When looking at the tail-latency of each configuration, a
different story emerges. A CDF of slowest 1% of both get
and set requests can be seen in Figure 9. As expected, perfor-
mance of the standard GC configuration has a very long tail
from GC pauses. The results for the GC-Off configuration
and the BLADE configuration however are nearly identical.
This is expected from the performance model we established
in Section 4.2.1, that showed latency has an expected increase
of 1 network RTT during a GC, a value of 48 µs in our exper-
imental setup. Indeed, as can be seen in the detailed breakout
of the performance in Table 7, BLADE slightly outperforms
the GC-Off configuration. This is due to the GC-Off configu-
ration paying a penalty from the higher memory use as men-
tioned previously, and the 48 µs being within the tail-latency
caused by other sources of jitter such as the OS scheduler.

6. Discussion & Limitations
Understanding Performance With BLADE we set out to
achieve three goals: bound tail-latency in distributed systems,
do so using system specific failure recovery mechanisms, and
to allow the performance impact of garbage collection to be
modelled without knowledge of production workloads. For
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Figure 9: CDF of Etcd replicated key-value store request latency
for all GC configurations

the final point, the performance models for each system in
Section 3 demonstrate how BLADE can achieve this. With
Raft for example, we know that the latency impact of using
a garbage collected language will be a single extra network
RTT. As the time to complete any request is at least one
network RTT, using a garbage collector with BLADE limits
the tail-latency from GC to twice the mean in the worst case.
Importantly, the impact of GC is now in units comparable
to the rest of the system. Furthermore, as network speeds
improve over time, so will BLADE. While our test setup had a
network RTT of 48 µs, 10 Gbps NICs are currently available
that achieve less than 1.5,µs latency at the end-host [40].
Garbage collectors are chasing a continually moving target,
but BLADE scales with the performance of the distributed
system.

Limitations Another important outcome from using BLADE
in a distributed system, is the changed requirements for the
garbage collector. As BLADE deals with the latency impact,
in most situations a concurrent collector will no longer be
the best fit. Instead, a simpler and high-throughput stop-
the-world collector is best suited [22]. These collectors are
already readily available in most languages, unlike high-
performance concurrent collectors.

There are, however, a number of limitations with BLADE.

• First and foremost, BLADE is not a universal solution.
We specifically target distributed systems as this is an
important area where low-latency matters and we’ve had
bad experiences with garbage collected languages. Even
then, BLADE wil not work for every distributed system as
it relies on their being a failure recovery mechanism that
can be exploited. Common, but not universal.

• Secondly, BLADE requires developers to write code and
doesn’t apply transparently. This, however, is by design
and we believe our results show that the amount of work

needed is low. Even with garbage collection, developers
do not ignore memory management and still apply tech-
niques such as local allocation caches to improve perfor-
mance, BLADE is one more technique that can be used.

• Third, BLADE takes whole servers offline during a garbage
collection, which may be too large a capacity loss for
some systems. If, for example, BLADE was used for a
HTTP cluster with only two servers, then using 50% of
the cluster capacity is likely to be unworkable.

7. Related Work
Trash Day Mass et al. have recently done work on coordi-
nating garbage collection in a distributed system [38]. They
look at two different systems, Spark [65] and Cassandra [33],
noting that for Spark, having all nodes collect at the same time
improves performance, while for Cassandra, staggering col-
lection and routing requests around nodes can reduce tail la-
tency. They design a run-time system to provide a general ap-
proach to this problem, allowing different coordination strate-
gies across multiple nodes to be implemented.

Process Restarts We have heard of a few different compa-
nies in industry that disable garbage collection, either com-
pletely or for the old generation, and then kill and restart
the process as needed. They will often attempt to drain re-
quests before restarting the process. This is similar to BLADE
but less principled, support is not provided directly in the
programming language and as it requires that programs can
support arbitrary restarts, it only works for a subset of the
programs that BLADE supports. Restarting should also be a
slower operation as it needs to reload state from permanent
storage. As far as we are aware, none of these companies ap-
ply this technique to stateful systems such as Raft.

HTTP Load-balancing Portillo-Dominguez et al. have re-
cently done work on HTTP load-balancers in Java to avoid
the impact of garbage collection on latencies [52, 53]. Their
approach is very similar to BLADE, modifying a round-robin
routing algorithm to avoid the collecting server. They do not
modify the language or RTS however as we propose, instead
they model the GC and try to predict when it will collect. Mis-
predictions mean lower performance than BLADE, and also
no ability to deal with overlapping collections. They also deal
with a very different level of performance than we are con-
cerned with, starting with worst case request latencies in the
hundreds of seconds and reducing that to the tens of seconds.
We are instead concerned with microseconds.

JVM & .NET The Java Virtual Machine (JVM) supports
two programmable interfaces to the garbage collector. One is
the System.gc() function that suggest to the RTS to start the
GC. The other is the Garbage Collection Notifications API
(JGCN) optional extension [46]. JGCN supports callbacks,
like BLADE, to the application, but it only supports notify-
ing the application after a collection has complete. JGCN is
intended for performance monitoring and debugging.
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Microsoft’s .NET platform supports an API very simi-
lar to BLADE, the Garbage Collection Notifications API
(MGCN) [41]. MGCN, like BLADE, supports application
callbacks before garbage collection occurs. MGCN doesn’t,
however, allow the application to delay collection, only to
start it earlier than the RTS planned. MGCN is suggested for
use by Microsoft in a similar manner to BLADE, but as of
this time we are unaware of any reports on it’s usage or eval-
uation of it. The lack of control with MGCN to coordinate
nodes, and avoid GC overlaps at servers, appears to be a con-
cern with some potential users. The popular Stack Overflow
website, for example, chose not to use MGCN partially for
this reason [55].

Concurrent Tracing Garbage Collectors A vast amount of
work has been done in improving pause times of garbage
collectors. A sample of this was covered in Section 2. Azul
Systems Zing GC [4, 15, 23, 30] is one of the best available
today, with pause times in the low milliseconds or microsec-
onds. This is still one to two orders of magnitude above what
BLADE can achieve, and will get worse as faster networks
with under 5 µs RTT become available. The work by Pizlo et
al. such as Schism, on real-time collectors [50, 51] achieves
the lowest pause times we are aware of, capable of bounds in
the tens of microseconds but suffers from 30% lower through-
put and 20% higher memory consumption compared to stop-
the-world collectors. Other concurrent and real-time collec-
tors that we are aware of [5, 6, 14, 19, 27, 28, 39, 64] all per-
form worse in latency and/or throughput than both Azul and
Schism, with pause times in the tens of milliseconds. Finally,
while many of these systems have STW pauses for some sit-
uations, work such as that of Tomoharu et al. [61] seeks to
address these final cases.

Reference Counting The best reference counting collec-
tors have very low and uniform latency impact on an ap-
plication as demonstrated by the Ulterior Reference Count-
ing [10] collector. However, they have historically suffered
from lower throughput compared to tracing collectors. The
work of Shahriyar et al. [56, 57] has made reference count-
ing collectors competitive, but does so by incorporating back-
ground tasks and pauses. Unfortunately Shahriyar doesn’t re-
port the latency impact of these changes.

Tail tolerance Vulimiri et al. proposed [62] an approach to
handling tail-latency for Internet services such as DNS, where
requests were duplicated and sent to multiple servers. Dean
and Barroso proposed and investigated a similar idea [18],
but specifically for addressing tail-latency [18] in data cen-
ters. Servers then either race to fulfil the request, or coordinate
with each other to claim ownership of the request when they
start processing it. Jalaparti applied this idea, as well as allow-
ing incomplete requests, to build a framework for construct-
ing data center services [31]. BLADE takes a similar approach
to tail tolerant systems, not attempting to reduce the impact
of garbage collection on an individual server, but avoiding

it’s impact on the end-to-end system. BLADE however solves
a specific, but common problem, garbage collection, rather
than treating servers as a black box. This allows BLADE to be
used in situations such as Raft where tail tolerant systems do
not apply as requests cannot be duplicated and sent to multi-
ple servers.

8. Conclusion
BLADE is a new approach to garbage collection for a partic-
ular, but large and important class of programs: distributed
systems. BLADE uses the ability of distributed systems to
deal with failure, to also handle garbage collection, treating
garbage collection as a partially predictable and controllable
failure. We applied BLADE to two important and common
systems, a cluster of web servers and the Raft consensus al-
gorithm. For the first case, we eliminated the latency impact
of garbage collection, and for the second, we reduced it to the
order of a single network round-trip, or 48 µs in our experi-
ment. As BLADE handles the impact of garbage collectors in
distributed systems rather than attempt to improve them di-
rectly, it allows for a different set of choices when designing
the collector. Simple, high-throughput designs are preferable
with BLADE than the complexity of collectors that try to min-
imize pause times.
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