
Filters and an Oscillator Using
a New Solenoid Model
A transmission-line model enables a wider range of filter and oscillator designs

By Randy Rhea
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For most of us, discoveries in the art are
rare. My books reviewed the contribu-
tions of many engineers and contained a

limited number of original ideas. I recall many
excited moments during my career that faded
upon the realization that a “discovery” was
actually a measurement error, misunderstand-
ing or rediscovery.

In 1997, an engineer requested that I exam-
ine his measured data for an inductor. The data
was unexpected, so I decided to measure a sim-
ple solenoid with a network analyzer. The ana-
lyzer display stunned me. This moment of
excitement would not fade. The industry’s
accepted and century-old inductor model was
wrong. Why had no engineer before me per-
formed this simple experiment and written
about it? The significance of the experiment
began to unfold at my desk as I examined the
problem mathematically. As is often the case,
new knowledge is both satisfying and useful.
The purpose of this paper is to describe new fil-
ter and oscillator structures suggested by the
new model. First, I will review the historic
inductor model, then the new one.

The historic model    
One need only ponder a solenoid inductor to

realize that the close spaced turns are capaci-
tively coupled. But how do you measure capaci-
tance that is shorted by a turn of wire? Webster
[12] solved this problem by building a parallel-
resonant mode oscillator using an inductor and
its self-capacitance. Knowing the inductance
(measured at low frequency) and the oscillating
frequency, you may deduce the capacitance.
From this capacitance, and series resistance
from the wire loss, the model of the inductor

given in Figure 1(a) was born. The transmission
amplitude and phase versus frequency of this
model that is simulated from the schematic and
computed by the GENESYS [2] software pro-
gram is given in Figure 1(b). 

Numerous attempts at mathematically solv-
ing the self-capacitance failed. Medhurst [6]
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� Figure 1. Classic inductor model with capaci-
tance from Medhurst (a) and the transmission
amplitude and phase responses (b).
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abandoned mathematical attempts in favor of an empir-
ical approach with one end of the solenoid grounded.
The accuracy of his capacitance is verifiable. 

While Medhurst’s capacitance is correct, the model he
inherited is wrong. You may easily observe that the
world is flat. It is equally obvious, and incorrect, that
inter-winding capacitance is important. The phase shift
from one turn to the next is small. With turns at nearly
equal voltage potential phase, the effect of coupling
capacitance is negligible. The capacitance between turns
is effectively shorted. Since experiments showed that
closer spacing did not increase the capacitance, it should
have been suspected years ago that the capacitance is
not turn-to-turn. Some rather esoteric explanations for
this anomaly were promulgated. The capacitance that
Medhurst quantified is capacitance of the solenoid to
ground, not capacitance turn-to-turn. To understand
how this error occurred, consider the analyzer data and
a proposed new model.

A new solenoid model
Given in Figure 2 is a 12.9 turn solenoid mounted

over a ground plane [10]. It is wound with 18 gauge cop-
per wire. The mean radius is 0.268 inches, the mean
length is 0.890 inches, and the outside of the wire is
0.135 inches above the aluminum ground plane. The
resulting transmission amplitude and phase are given in
Figure 3. One striking feature is the periodic nature of
the response, which clearly suggests a transmission-line
model for the solenoid. This is not predicted by the clas-
sic model. Equally revealing is the transmission phase
shift at the first anti-resonant mode of the classic model
transitions from –90 to +90 degrees, while the measured
data is continuous at –90 degrees. The classic model
completely fails to predict the high-frequency behavior
of the solenoid.

Shown in Figure 4 are the transmission amplitude
and phase of a transmission line with Z0 = 796 ohms
and an electrical length of 90 degrees at 195 MHz.
Notice improved correlation to the measured solenoid
responses. A transmission line may be modeled by dis-
tributed series inductance and shunt capacitance to
ground. The characteristic impedance and electrical line
length are related to the per unit series inductance and
shunt capacitance by

(1)

(2)

or

(3)

This model predicts higher-order modes by static

series inductance and shunt capacitance measured at
low frequency. The model’s elegance is further con-
firmed by the fact that these static parameters are easi-
ly calculated using existing mathematical techniques
and that these techniques are equally applicable to
diverse configurations, such as a solenoid above a
ground plane or coax with a helical inner conductor.
Mathematical calculation of the capacitance is now
straightforward.    

If the classic model assumed by Medhurst is wrong,
how did he obtain the correct value of capacitance?
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� Figure 2. The 12.9 turn copper-wire solenoid inductor
mounted over a ground plane and configured for trans-
mission amplitude and phase measurement.

� Figure 3. Transmission amplitude of the solenoid over
ground (top) from 0.5 to 1300 MHz with a vertical scale of
–40 to +10 dB and the transmission phase (bottom) with
a scale of –270 to +630 degrees.
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Medhurst’s parallel-mode resonator had one end of the
inductor grounded. By chance, the inter-winding capac-
itance was effectively capacitance to ground.

Models for common configurations
The static inductance may be estimated using the

popular formula from Wheeler [13],

(4)

where n is the number of turns, a is the solenoid radius
and c is the solenoid length. Wheeler’s formula is accu-
rate to ±1.5 percent for small wire diameter. For smaller
gauge wire it overestimates the inductance. To compen-
sate, I prefer to use the inside radius of the winding.

Table 1 gives the computed capacitance for common
solenoid inductor configurations. The model transmis-
sion line impedance and electrical length are then com-
puted from Equations (1) and (3) using these static
inductance and capacitance. Alternatively, the static
inductance and capacitance may be measured with low
frequency instrumentation. 

The capacitance is estimated assuming the solenoid is
a solid cylinder. For example, to find the capacitance of
the solenoid in Figure 2, the capacitance of a cylinder
over ground is used. In Table 1, the characteristic
impedance formula for various configurations [3] is used
to compute the capacitance by the formula

(5)

where V0 is the velocity of light in a vacuum and Z0 is
the characteristic impedance of the configuration.

Effect of a shield on inductance
Wheeler’s inductance formula assumes an unshielded

solenoid. Bogle [1] gives an inductance reduction factor
based on a conducting, non-magnetic, circular shield.

(6)

The shielded inductance is found by multiplying the
unshielded inductance by Bogle’s factor. A shield radius
of twice the solenoid radius and a solenoid length to
radius ratio of 4 yields an inductance reduction of 18
percent. For square shields, a radius equal to 0.6 times
the side dimension may be used. Shielding is ignored for
a solenoid overground as data regarding the inductance
reduction of a flat, adjacent, ground plane is unknown to
this author.  
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� Figure 5. =S/FILTER= Specification tab (top) and
schematic (bottom) for the 3rd order (6th degree) series-
resonator bandpass filter.

� Figure 4. Transmission amplitude of the solenoid over
ground (top) from 0.5 to 1300 MHz with a vertical scale of
–40 to +10 dB and the transmission phase (bottom) with
a scale of –270 to +630 degrees.
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The model below the 1st-resonant mode
For frequencies well below the 1st-anti-resonant

mode, the capacitance is immaterial and the solenoid
inductor is accurately modeled as a simple inductor. The
reactance of a shorted transmission line is nearly linear
(modeled by an inductor) for electrical line lengths up to
λ/16 or 22.5 degrees. The frequency limit associated with
this line length is

(7)

Above this frequency limit the new model is suggested.
Next, we will exploit the accuracy of this new model

to create new classes of bandpass filters that use the
series-resonant 2nd mode.

Capacitor-coupled 2nd-mode bandpass filter
Figure 5 gives the schematic of a third-order (sixth-

degree) shunt capacitor-coupled, series-resonator
lumped element Chebyshev 0.10 dB ripple, 750 MHz to
800 MHz bandpass filter. This filter is often designed
using an approximate method described in Matthaei [5].
The accuracy of this routine degrades with increasing
bandwidth. In this case, exact synthesis [11] was used to
find element values. This filter has five transmission
zeros at DC and one transmission zero at infinite fre-
quency. An =S/FILTER= program screen, with the
Specification tab active, is given at the top of Figure 5.   

The L-C series resonators in Figure 5 may be replaced
with equivalent transmission lines [8] that are 180
degrees long at the resonant frequency of that branch
and with a characteristic impedance of

(8)

where L is the inductance in each respective branch.
The inductor and capacitor in each series resonator
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� Figure 6. Shunt-capacitor coupled bandpass with series
L-C resonators replaced with 2nd-mode solenoids mod-
eled by transmission lines. Physical solenoids are
designed using Equations (1) and (3) with inductance
from Equation (4) and capacitance from Table 1.

Cylindrical shield

Solenoid over plane

Square shield

Trough shield

Slabline shield

C
c

V
b
a

pFr
0

0
0

59 952
=

ε

. ln






C
c

V
H

a
H

a

r
0

0
0 0

2

59 952
2 2

1

=

+

ε

. ln






−












C
c

V
H

a

pFr
0

0
0

59 952
1 0787

=
ε

. ln
.

C
c

V
b
a

H
b

pFr
0

0
0

59 952
4

=
ε

π
π

. ln tanh






C
c

V
X Y
X Y

R
R

R
a
H

X R Y R

r
0

0

4
8

0

2 2

59 952
30

0 01

2
1 2 1 2

=
+

+

=

= + =

ε

π

. ln .

sinh , sin

−







−











−

� Table 1. Static capacitance computed from the character-
istic impedance of solid-cylinder models of solenoid con-
figurations. V0 = 1.180285 ×× 1010 for dimensions in inch-
es and V0 = 2.997925 ×× 1011 for dimensions in 
millimeters. 
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should not be confused with the static inductance and
capacitance of the solenoids used to form the resonators.
The schematic of the final shunt-capacitor coupled 2nd-
mode bandpass is given in Figure 6. The solenoids are
operated at the series-resonant 2nd mode and are
depicted in Figure 6 as transmission lines. 

The substitution of the series L-C resonators with
solenoid transmission lines converts transmission zeros
at infinite frequency to reentrant modes at frequencies

above the passband. The filter in Figure 5(b) has no
transmission zero at DC, which results in reduced low-
frequency rejection. 

2nd-mode bandpass filter using only solenoids
Figure 7 gives the schematic of a three-section series-

resonator bandpass using coupling inductors rather
than coupling capacitors. This structure has five trans-
mission zeros at DC and one at infinite frequency. On
the bottom in Figure 7 the series L-C resonators have
been replaced with 2nd-mode solenoids. 

Figure 8 gives the simulated response of the induc-
tive-coupled 2nd-mode bandpass. A photograph of a pro-
totype filter with solenoids wound using 18-gauge wire
is given in Figure 9. Measured data is superimposed as
circular points on the simulated response in Figure 8.
The frequencies of the 2nd-mode resonators in the pro-
totype filter were tuned using bendable metal tabs sol-
dered to the side of the square shield. This introduces a
small amount of capacitance, thus lowering and adjust-
ing the frequency of each resonator.   

Notice that this filter requires no capacitors: res-
onators are formed by the series-resonant 2nd-mode of
the new solenoid model.

Solenoid unloaded Q
Component Q (unloaded Q) is defined as the ratio of

stored to dissipated energy. More energy is stored in a
larger magnetic field, and inductor Q can be increased
by increasing the radius of the solenoid. Unfortunately,
increasing radius also results in increased solenoid
capacity. Classic inductor theory dictates that this capac-
itance must be much less than the inductor reactance.
This limits the solenoid size and thus the available
inductor Q. 

Resonators constructed using the theory of the new
model do not suffer this limitation. This capacity is a
natural and desired element of the resonator. Therefore
the resonator can be physically larger and can achieve
higher unloaded Q.

My work with the new model has not yet specifically
addressed unloaded Q. Nevertheless, the insertion loss
of resonators and filters that have been constructed
suggest that the unloaded Q predicted by Medhurst [6]
is valid for the new transmission line model. 

As solenoid size increases, radiation loss becomes
more significant. This is typically not significant for
inductors designed using the classic theory because
inductor capacitance limits the maximum size. The new
model permits larger solenoid size, and radiation is more
likely to become significant. While solenoids enclosed by
a square or round enclosure do not suffer from radiation
loss, a solenoid over ground is more susceptible. The
maximum size of shielded solenoids is limited by mode-
ing in the enclosure. Additionally, the size and therefore
the unloaded Q is limited by the fact that the number of

� Figure 8. Simulated and measured amplitude response of
the shunt-inductor coupled 2nd-mode solenoid bandpass.

� Figure 7. Shunt-inductor coupled series-resonator band-
pass filter (top) designed by =S/FILTER= and with res-
onators replaced with 2nd-mode solenoids (bottom).
Series inductors model the wire connecting the solenoids.
The helix parameters are for solenoids in a square shield.
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turns to achieve resonance decreases with an increasing
solenoid radius. As the number of turns decreases below
a few turns, the phase shift between turns becomes sig-
nificant and the model fails.  

2nd-mode oscillator
The potential for improved unloaded Q of the new

solenoid model supports its use in oscillators with lower
phase noise. Examination of the benchmark paper by
Leeson [4] reveals that neither a particular oscillator
topology nor circuit complexity is required to achieve
low phase noise. In fact, overly complex designs risk
additional resonances from component and layout para-
sitics. Design elegance remedies these problems. 

I started with the selection of a Mini-Circuits MAR-3
silicon MMIC for the sustaining amplifier. To illustrate
the application of basic design elements toward design
elegance, let me describe the thoughts that drove the
development of the proposed oscillator in Figure 10.
This design achieves a loaded Q of 59 using a 2nd-mode
solenoid resonator.      

• The natural input and output impedances of the 
MAR-3 are near 50 ohms. To achieve a loaded Q of 59
would require a characteristic impedance of nearly
4000 ohms in a series connected 2nd-mode solenoid.
This requires high inductance and low capacitance
resulting in small wire and poor unloaded Q, therefor
eresonator coupling will be used.

• Supply voltage to the MAR-3 is typically delivered
through the device output using a resistor or choke
inductor. We will use this same inductor as a shunt-
coupling element to effectively lower the impedance of
the MAR-3 presented to the 1st-mode resonator, thus
increasing loaded Q.

• A shunt-coupling reactor is also required at the output
of the 2nd-mode resonator. Because the 2nd-mode
solenoid is now at DC supply potential, a coupling
capacitor is selected so as not to short the supply. A
coupling inductor would require a bypass capacitor.

• To form oscillator feedback, the output of the res-

onator must be connected to the input
of the MAR-3. This would short the
supply voltage to the MAR-3 input. A
coupling capacitor is required here.

• The gain, phase shift and input/output
match of the amplifier-resonator cas-
cade must be managed to satisfy
Barkhousen’s oscillation criteria. The
values of all elements in the design are
adjusted by computer optimization in
GENESYS [2] to satisfy these criteria
and to achieve the desired loaded Q.

The open loop (from port 1 to port 2)
gain and phase response of the design

are given in Figure 10. The phase shift is near zero
degrees at 1000 MHz, and the gain margin is 5.53 dB. To
form the oscillator, the output is connected to the input.
Since the oscillator is self-terminating, for the analysis
to be accurate, the cascade input and output impedances
should be approximately matched: in this case 8 dB or
better return loss. The output power is taken through a
2 pF coupling capacitor at port 3. 

It is not guaranteed that any chosen topology will sat-
isfy all of these criteria simultaneously. In fact, the
schematic in Figure 10 was not my first attempt for this
design. Historically, topologies that satisfied design cri-
teria were named after their discoverer, for example,
Hartley. Design based on the fundamentals frees the
designer from the shackles of a particular topology and
often results in a more elegant, higher performance
design. For a further description of design methods
please refer to [9].

Limitations of the new model
This paper illustrates the usefulness of the new sole-

noid model. I found it compelling that inductance and
capacitance measured at low frequency are capable of
predicting solenoid behavior at high frequencies.
However, notice that the resonances in the measured
solenoid data in Figure 3 are not harmonically related as
they would be for a simple transmission line model. The
reason is that propagation on a solenoid over a ground
plane is dispersive; it is not pure-TEM mode. Only one
month after Rhea [10], Mezak [7] published a paper that
presents a solution to the solenoid that considers dis-
persion. Mezak’s solution is more mathematically
involved than Rhea’s solution, but Mezak’s is more
accurate.

Shielded solenoids are less dispersive and therefore
the simpler model is more applicable. In Rhea [10], the
measured data in Figure 16 of the helical coax unit
shown in Figure 15 exhibits harmonically related 1st
(anti-resonant), 2nd (series-resonant) and 3rd (anti-res-
onant) modes. Dispersion is also low for solenoids that
are small with respect to a free-space wavelength and

� Figure 9. Prototype 2nd-mode bandpass. 1.5 turn shunt-coupling inductors
are barely visible at the inside of the end walls of the center section.
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that are mounted close to ground planes. Dispersion is
most severe in large solenoids with few turns, such as
the unit in Figure 18 of Rhea [10]. �
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� Figure 10. The open loop transmission gain and phase and loaded Q (left) of a 1 GHz
2nd-mode solenoid oscillator (lower right). The cascade input and output return
loss are given on the Smith chart (upper right).


